The Hortonworks Blog

More from Ofer Mendelevitch

A lot of people ask me: how do I become a data scientist? I think the short answer is: as with any technical role, it isn’t necessarily easy or quick, but if you’re smart, committed and willing to invest in learning and experimentation, then of course you can do it.

In a previous post, I described my view on “What is a data scientist?”: it’s a hybrid role that combines the “applied scientist” with the “data engineer”. …

In a recent blog post I mentioned the 4 reasons for using Hadoop for data science. In this blog post I would like to dive deeper into the last of these reasons: data agility.

In most existing data architectures, based on relational database systems, the data schema is of central importance, and needs to be designed and maintained carefully over the lifetime of the project. Furthermore, whatever data fits into the schema will be stored, and everything else typically gets ignored and lost.…

Data scientists are in high demand these days. Everyone seems to be hiring a team of data scientists, yet many are still not quite sure what data science is all about, and what skill set they need to look for in a data scientist to build a stellar Hadoop data science team. We at Hortonworks believe data science is an evolving discipline that will continue to grow in demand in the coming years, especially with the growth of Hadoop adoption.…

Over the last 10 years or so, large web companies such as Google, Yahoo!, Amazon and Facebook have successfully applied large scale machine learning algorithms over big data sets, creating innovative data products such as online advertising systems and recommendation engines.

Apache Hadoop is quickly becoming a central store for big data in the enterprise, and thus is a natural platform with which enterprise IT can now apply data science to a variety of business problems such as product recommendation, fraud detection, and sentiment analysis.…