The Hortonworks Blog

Other posts in this series:
Introducing Apache Hadoop YARN
Apache Hadoop YARN – Background and an Overview
Apache Hadoop YARN – Concepts and Applications
Apache Hadoop YARN – ResourceManager
Apache Hadoop YARN – NodeManager

Apache Hadoop YARN – ResourceManager

As previously described, ResourceManager (RM) is the master that arbitrates all the available cluster resources and thus helps manage the distributed applications running on the YARN system. It works together with the per-node NodeManagers (NMs) and the per-application ApplicationMasters (AMs).…

The August Pig Hackathon brought Pig users from Hortonworks, Yahoo, Cloudera, Visa, Kaiser Permanente, and LinkedIn to Hortonworks HQ in Sunnyvale, CA to talk and work on Apache Pig.

Jonathan Coveney and Bill Graham from Twitter walked newer Pig users through how Pig translates a Pig Latin script to map reduce jobs and went over how to read the output of explain. For those interested, Hortonworks founder Alan Gates covers this in Chapter 1 of Programming Pig.…

Introduction

A Highly Available NameNode for HDFS has been in development since last year. That effort focused singularly on the automatic failover of the NameNode for Hadoop 2.0. During that time we have realized two things.

First, we realized we should use an outside-in approach to the HA problem: start by designing the availability of the Hadoop system as a whole and then focus on the high-availability of individual components; that work lead to the Full Stack HA Architecture.…

Series Introduction

Apache Pig is a dataflow oriented, scripting interface to Hadoop. Pig enables you to manipulate data as tuples in simple pipelines without thinking about the complexities of MapReduce.

But Pig is more than that. Pig has emerged as the ‘duct tape’ of Big Data, enabling you to send data between distributed systems in a few lines of code. In this series, we’re going to show you how to use Hadoop and Pig to connect different distributed systems to enable you to process data from wherever and to wherever you like.…

Pre-crime? Pretty close…

If you have seen the futuristic movie Minority Report, you most likely have an idea of how many factors and decisions go into crime prevention. Yes, Pre-crime is an aspect of the future but even today it is clear that many social, economic, psychological, racial, and geographical circumstances must be thoroughly considered in order to make crime prediction even partially possible and accurate. The predictive analytics made possible with Apache Hadoop can significantly benefit this area of government security.…

This is the first part of a series written by Charles Boicey from the UC Irvine Medical Center.  The series will demonstrate a real case study for Apache Hadoop in healthcare and also journal the architecture and technical considerations presented during implementation.

With a single observation in early 2011, the Hadoop strategy at UC Irvine Medical Center started. While using Twitter, Facebook, LinkedIn and Yahoo we came to the conclusion that healthcare data although domain specific is structurally not much different than a tweet, Facebook posting or LinkedIn profile and that the environment powering these applications should be able to do the same with healthcare data.…

This week, I spent some time and enjoyed speaking at the Softgrid 2012 conference in San Francisco. It was a great collection of speakers and attendees and opened my eyes to some Hadoop driven possibilities that not only differentiate utilities companies but will also transform our day-to-day lives.

The conference focused on software (in this case intelligent analytics) as a competitive advantage to enable value and growth for utilities.  These often large and historically conservative organizations have moved beyond the notion that their sole business is to distribute electric power efficiently, reliably, and cost-effectively to consumers.…

Do you want to understand how Apache Hadoop can benefit your business? Do you understand the relationship between Hadoop and your Big Data initiatives? Are you struggling to explain the benefits of Hadoop to your management team?

At Hortonworks, we are constantly being asked by business and executive audiences to explain use cases, benefits and components of Hadoop. While the interest in Big Data and Hadoop grows, this urgent and often pressing demand for a map to create value and differentiation amplifies.…

Series Introduction

Apache Pig is a dataflow oriented, scripting interface to Hadoop. Pig enables you to manipulate data as tuples in simple pipelines without thinking about the complexities of MapReduce.

But Pig is more than that. Pig has emerged as the ‘duct tape’ of Big Data, enabling you to send data between distributed systems in a few lines of code. In this series, we’re going to show you how to use Hadoop and Pig to connect different distributed systems, to enable you to process data from wherever and to wherever you like.…

Other posts in this series:
Introducing Apache Hadoop YARN
Apache Hadoop YARN – Background and an Overview
Apache Hadoop YARN – Concepts and Applications
Apache Hadoop YARN – ResourceManager
Apache Hadoop YARN – NodeManager

Apache Hadoop YARN – Concepts & Applications

As previously described, YARN is essentially a system for managing distributed applications. It consists of a central ResourceManager, which arbitrates all available cluster resources, and a per-node NodeManager, which takes direction from the ResourceManager and is responsible for managing resources available on a single node.…

Nothing happens in a vacuum anymore.  Cities now have the ability to use information collected from a massive variety of sources in order help solve common city problems.  The information can arise from anywhere – tweets, blog posts, and meter readings all can serve to inform public officials (and citizens as a whole) about how to better interact in a data-drenched world.

Most famously, IBM’s Smart Cities initiative looks at how city governments meet the needs of their expanding populations by using available resources more efficiently. …

Other posts in this series:
Introducing Apache Hadoop YARN
Philosophy behind YARN Resource Management
Apache Hadoop YARN – Background and an Overview
Apache Hadoop YARN – Concepts and Applications
Apache Hadoop YARN – ResourceManager
Apache Hadoop YARN – NodeManager

Apache Hadoop YARN – Background & Overview

Celebrating the significant milestone that was Apache Hadoop YARN being promoted to a full-fledged sub-project of Apache Hadoop in the ASF we present the first blog in a multi-part series on Apache Hadoop YARN – a general-purpose, distributed, application management framework that supersedes the classic Apache Hadoop MapReduce framework for processing data in Hadoop clusters.…

Other posts in this series:
Introducing Apache Hadoop YARN
Apache Hadoop YARN – Background and an Overview
Apache Hadoop YARN – Concepts and Applications
Apache Hadoop YARN – ResourceManager
Apache Hadoop YARN – NodeManager

Introducing Apache Hadoop YARN

I’m thrilled to announce that the Apache Hadoop community has decided to promote the next-generation Hadoop data-processing framework, i.e. YARN, to be a sub-project of Apache Hadoop in the ASF!

Apache Hadoop YARN joins Hadoop Common (core libraries), Hadoop HDFS (storage) and Hadoop MapReduce (the MapReduce implementation) as the sub-projects of the Apache Hadoop which, itself, is a Top Level Project in the Apache Software Foundation.…

Earlier, in the “Big Data in Genomics and Cancer Treatment” blog post, I explored how the extensive amount of information in DNA analysis mostly comes from the vast array of characteristics associated with people’s DNA make up and with different cancer variations. The case with today’s healthcare is very similar. Each patient is unique and has thorough medical history records that allow doctors to make evaluations and recommendations for future treatments.…

Small companies, big data.

Big data is sometimes at odds with the business-savvy entrepreneur who wants to exploit its full potential.   In essence, the business potential of big data is the massive (but promising) elephant in the room that remains invisible because the available talent necessary to take full advantage of the technology is difficult to obtain.

Inventing new technology for the platform is critical, but so too is making it easier to use.…

Go to page:« First...1020...3132333435...40...Last »