Jobs are not displayed under the Job tab in Ambari 1.5.1

to create new topics or reply. | New User Registration

This topic contains 1 reply, has 2 voices, and was last updated by  Jeff Sposetti 9 months, 4 weeks ago.

  • Creator
    Topic
  • #58309

    Aparna Mahale
    Participant

    Hi,
    We have configured an Ambari cluster using the Apache Ambari Install wizard for which Ambari version is 1.5.1 and Cluster Stack Version: HDP-2.1.
    Now, when I login to Ambari console using admin/normal user I am able to see the Jobs tab. However, when I click on the Jobs tab , no jobs are displayed there.
    However, the JobHistory UI Link displayed under the Quicklinks section of the MapReduce2 section on the LHS displays job history.

    Am therefore, unable to figure out as to why the Jobs tab is not displaying any jobs ? Have I missed out on any configuration that had to be added.
    Also, the Jobs type on the Extreme RHS shows Hive. Now, does it mean that only the jobs submiited via hive queries will be listed here or even the yarn (mapreduce jobs) will be displayed here.

    The job summary related info in the config at /etc/hadoop/conf/log4j.properties on the JobTracker host is as follows:

    # Job Summary Appender
    #
    # Use following logger to send summary to separate file defined by
    # hadoop.mapreduce.jobsummary.log.file rolled daily:
    # hadoop.mapreduce.jobsummary.logger=INFO,JSA
    #
    hadoop.mapreduce.jobsummary.logger=${hadoop.root.logger}
    hadoop.mapreduce.jobsummary.log.file=hadoop-mapreduce.jobsummary.log
    log4j.appender.JSA=org.apache.log4j.DailyRollingFileAppender
    # Set the ResourceManager summary log filename
    yarn.server.resourcemanager.appsummary.log.file=hadoop-mapreduce.jobsummary.log
    # Set the ResourceManager summary log level and appender
    yarn.server.resourcemanager.appsummary.logger=${hadoop.root.logger}
    #yarn.server.resourcemanager.appsummary.logger=INFO,RMSUMMARY

    # To enable AppSummaryLogging for the RM,
    # set yarn.server.resourcemanager.appsummary.logger to
    # LEVEL,RMSUMMARY in hadoop-env.sh

    # Appender for ResourceManager Application Summary Log
    # Requires the following properties to be set
    # – hadoop.log.dir (Hadoop Log directory)
    # – yarn.server.resourcemanager.appsummary.log.file (resource manager app summary log filename)
    # – yarn.server.resourcemanager.appsummary.logger (resource manager app summary log level and appender)
    log4j.appender.RMSUMMARY=org.apache.log4j.RollingFileAppender
    log4j.appender.RMSUMMARY.File=${yarn.log.dir}/${yarn.server.resourcemanager.appsummary.log.file}
    log4j.appender.RMSUMMARY.MaxFileSize=256MB
    log4j.appender.RMSUMMARY.MaxBackupIndex=20
    log4j.appender.RMSUMMARY.layout=org.apache.log4j.PatternLayout
    log4j.appender.RMSUMMARY.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
    log4j.appender.JSA.layout=org.apache.log4j.PatternLayout
    log4j.appender.JSA.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
    log4j.appender.JSA.DatePattern=.yyyy-MM-dd
    log4j.appender.JSA.layout=org.apache.log4j.PatternLayout
    log4j.logger.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=${yarn.server.resourcemanager.appsummary.logger}
    log4j.additivity.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=false

    Thanks,
    Aparna

Viewing 1 replies (of 1 total)

You must be to reply to this topic. | Create Account

  • Author
    Replies
  • #58312

    Jeff Sposetti
    Moderator

    Hi, The jobs tab in Ambari 1.5.1 display job information related to Hive Queries submitted to the Tez engine. It’s currently not for general jobs information.

    Collapse
Viewing 1 replies (of 1 total)
Hortonworks Data Platform
The Hortonworks Data Platform is a 100% open source distribution of Apache Hadoop that is truly enterprise grade having been built, tested and hardened with enterprise rigor.
Get started with Sandbox
Hortonworks Sandbox is a self-contained virtual machine with Apache Hadoop pre-configured alongside a set of hands-on, step-by-step Hadoop tutorials.
Modern Data Architecture
Tackle the challenges of big data. Hadoop integrates with existing EDW, RDBMS and MPP systems to deliver lower cost, higher capacity infrastructure.