
!"#$%#&'#$()!*+,-&.,/0!1+2#$%!3!!
!

!

!

455.&6!7+,8$.%9!%#!!

42/,-+!"/5##2!

!
!"#$%&%'!"%()!*+#,!*-.%//#0)!

!1%,'%0!2%34%)!5%,!67%,8!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

! ! ! !

!

''':"#$%#&'#$():,#;!

!!<-#$%#&'#$()!

Adding Security to Apache Hadoop

Devaraj Das*, Owen O’Malley*, Sanjay Radia*, and Kan Zhang**

*Hortonworks
**IBM

Abstract

Hadoop is a distributed system that provides a dis-

tributed filesystem and MapReduce batch job pro-

cessing on large clusters using commodity servers.

Although Hadoop is used on private clusters behind

an organization’s firewalls, Hadoop is often provided

as a shared multi-tenant service and is used to store

sensitive data; as a result, strong authentication and

authorization is necessary to protect private data.

Adding security to Hadoop is challenging because

all the interactions do not follow the classic client-

server pattern: the file system is partitioned and dis-

tributed requiring authorization checks at multiple

points; a submitted batch job is executed at a later

time on nodes different from the node on which the

client authenticated and submitted the job; job tasks

from different users are executed on the same com-

pute node; secondary services such as a workflow sys-

tem access Hadoop on behalf of users; and the system

scales to thousands of servers and tens of thousands

of concurrent tasks.

To address these challenges, the base Kerberos au-

thentication mechanism is supplemented by delega-

tion and capability-like access tokens and the notion

of trust for secondary services.

1 Overview

Apache Hadoop is a distributed system for stor-

ing large amounts of data and processing the data

in parallel. Hadoop is used as a multi-tenant ser-

vice internally at Yahoo! and stores sensitive data
such as personally identifiable information or finan-
cial data. Other organizations, including financial or-
ganizations, using Hadoop are beginning to store sen-
sitive data on Hadoop clusters. As a result, strong au-
thentication and authorization is necessary. This pa-
per describes the security issues that arise in Hadoop
and how we address them. Hadoop is a complex dis-
tributed system that poses a unique set of challenges
for adding security. While we rely primarily on Ker-

beros as our authentication mechanism, we supple-
ment it with delegation tokens, capability-like access
tokens and the notion of trust for auxiliary services.

1.1 Hadoop Background

Hadoop has been under development at Yahoo! and
a few other organization as an Apache open source
project over the last 5 years. It is gaining wide use in
the industry. Yahoo!, for example, has deployed tens
of Hadoop clusters, each typically with 4,000 nodes
and 15 petabytes.

Hadoop contains two main components. The first
component, HDFS [SKRC10], is a distributed file
system similar to GFS [GGL03]. HDFS contains a
metadata server called the NameNode that stores
the hierarchical file and directory name space and
the corresponding metadata, and a set of DataNodes
that stores the individual blocks of each files. Each
block, identified by a block id, is replicated at multi-
ple DataNodes. Client perform file metadata opera-
tions such as create file and open file, at the NameN-
ode over an RPC protocol and read/write the data of
a file directly to DataNodes using a streaming socket
protocol called the data-transfer protocol.

Job TrackerClient

Status Reporting

Job Submission

Client

Task
Tracker

Task

HDFS

Name
Node

Data
Node

Task

Oozie

Task
Tracker

Task

Data
Node

Task

...

Figure 1: Hadoop High-level Architecture

1

The second component is a framework for pro-
cessing large amounts of data in parallel using the
MapReduce paradigm [DG04] . HDFS DataNodes
also serve as compute nodes for MapReduce to allow
computation to be performed close to the data being
processed. A user submits a MapReduce job to the
JobTracker which schedules the job to be executed
on the compute nodes. Each compute node has a
small daemon called the TaskTracker that launches
map and reduce tasks of a job; the task tracker also
serves intermediate data created by map tasks to re-
duce tasks.
There are additional services deployed with

Hadoop, one of which are relevant to the security con-
cerns discussed in this paper. Ooozie is a workflow
system that provides a way to schedule and submit a
DAG of MapReduce jobs that are triggered for exe-
cution by data availability or time.

1.2 Challenges in Adding Security to

Hadoop

Adding security to Hadoop is challenging in that not
all interactions follow the usual client-server pattern
where the server authenticates the client and autho-
rizes each operation by checking an ACL:

1. The scale of the system offers its own unique
challenges. A 4000 node typical cluster is ex-
pected to serve over 100,000 concurrent tasks;
we expect the cluster size and the number of
tasks to increase over time. Commonly avail-
able Kerberos [SNS88] servers will not be able
to handle the scale of so many tasks authenti-
cating directly.

2. The file system is partitioned and distributed:
the NameNode processes the initial open/create
file operations and authorizes by checking file
ACLs. The client accesses the data directly from
the DataNodes which do not have any ACLs and
hence have no way of authorizing accesses.

3. A submitted batch job is executed at a later time
on nodes different from the node on which the
user authenticated and submitted the job. Hence
the users authentication at the job submission
computer needs to be propagated for later use
when the job is actually executed (note the user
has usually disconnected from the system when
the job actually gets executed.) This propagated
credentials raises issues of trust and offers oppor-
tunities for security violation.

4. The tasks of a job need to securely obtain in-
formation such as task parameters, intermediate

output of tasks, task status, etc. Intermediate
Map output is not stored in HDFS; it is stored
on the local disk of each compute node and is
accessed via an HTTP-based protocol served by
the Task-trackers.

5. Tasks from different tenants can be executed on
the same machine. This shared environment of-
fers opportunities for security violations via the
APIs of the local operating system of the com-
pute node: access to the intermediate output of
other tenants, access to concurrent tasks of other
jobs and access to the HDFSs local block storage
on the node.

6. Users can access the system through auxiliary
service such as Oozie, our work flow system. This
raises new issues. For example, should the users
credentials be passed through these secondary
services or should these services be trusted by
the rest of the Hadoop system?

Some of these problems are unique to systems like
Hadoop. Others, as individual problems, occur in
other systems. Where possible we have used standard
approaches and combined them with new solutions.
The overall set of solutions and how they interact, to
our knowledge are fairly unique and instructive to a
designer of complex distributed systems. We compare
our work with those of others in Section 12.

2 Secure and Non-Secure De-

ployments of Hadoop

Hadoop is deployed in many different organizations;
not all of them require a highly secure deployment.
Although, to date, only Yahoo! has deployed Secure
Hadoop clusters, many organizations are planning to
convert their environment to a secure one. Hence
Hadoop needs the options for being configured se-
cure (with strong authentication) or non-secure. The
non-secure configuration relies on client-side libraries
to send the clients side credentials as determined from
the client-side operating system as part of the proto-
col; while not secure, this configuration sufficient for
many deployment that rely on physical security. Au-
thorization checks through ACLs and file permissions
are still performed against the client supplied user-
id. A secure deployment requires that one config-
ures a Kerberos [SNS88] server; this paper described
the mechanisms and policies for such a secure deploy-
ment.

2

2.1 The Physical Environment

Each Hadoop cluster at Yahoo! is independently
managed and connected to the wider enterprise net-
work. The security policy of our organization dic-
tates that each cluster has gateways through which
jobs can be submitted or from which HDFS can be
accessed; the gateways firewall each Hadoop cluster.
Note this is a particular policy of our organization
and not a restriction of Hadoop: Hadoop itself allows
access to HDFS or MapReduce from any client that
can reach it via the network.
Each node in the cluster is physically secure and

is loaded with the Hadoop software by system ad-
ministrators; users do not have direct access to the
nodes and cannot install any software on these nodes.
Users can however login on a cluster’s gateway nodes.
A user cannot become a superuser (root) on any of
the cluster nodes. Further, a user cannot connect a
non-cluster node (such as user workstation) to the
cluster network and snoop on the network.
Although HDFS and and MapReduce clusters are

architecturally separate, the clusters are typically
configured to superimpose to allow computation to
be performed close to its data.

3 Usage Scenarios

1. Applications accessing HDFS An applica-
tion running on a cluster gateway, a cluster com-
pute node, or any computer that can connect to
the HDFS cluster that accesses HDFS files.

2. User submitting jobs to MapReduce clus-

ters A user submits jobs to a MapReduce queue
of a cluster. The user can disconnect after job
submission and may re-connect to get job status.
The job, when later executed, accesses HDFS
files as in Usage Scenario 1.

3. User submitting workflows to Oozie A user
submits a workflow to Oozie. Due to data trigger
or time trigger, the workflow is later executed
as Mapreduce jobs (as in Usage Scenario 2) on
behalf of the user that submitted the workflow.

4. Headless account doing use cases I, 2, 3

4 Security Threats

Voydock and Kent [VK83] identify three categories of
security violation: unauthorized release of informa-
tion, unauthorized modification of information and
denial of resources. We focus on only the first two as

part of our security solution. The following identify
the related areas of threat in Hadoop:

• An unauthorized client may access an HDFS file
via the RPC or via HTTP protocols.

• A unauthorized client may read/write a data
block of a file at a DataNode via the pipeline-
streaming data-transfer protocol

• A unauthorized user may submit a job to a queue
or delete or change priority of the job.

• A unauthorized client may access intermediate
data of Map job via its task trackers HTTP shuf-
fle protocol.

• An executing task may use the host operating
system interfaces to access other tasks, access
local data which include intermediate Map out-
put or the local storage of the DataNode that
runs on the same physical node.

• A task or node may masquerade as a Hadoop ser-
vice component such as a DataNode, NameNode,
job tracker, task tracker etc.

• A user may submit a workflow to Oozie as an-
other user.

5 Users, Groups and Login

We wanted to avoid creating user accounts for each
Hadoop user in the HDFS and MapReduce subsys-
tems. Instead Hadoop uses the existing user accounts
of the hosting organization and Hadoop depends on
external user credentials (e.g. OS login, Kerberos
credentials, etc).

Hadoop supports single signon. For a non-secure
deployment, the user needs to merely login into the
computer from Hadoop is accessed. For secure de-
ployment, the system login is supplemented by Ker-
beros signon. Any subsequent access to Hadoop car-
ries the credentials for authentication.

As part of client authentication to a Hadoop ser-
vice, the user is identified by a user-id string. A
user-id is not converted to a uid number as in tradi-
tional Unix or mapped to a ”Hadoop-account”. Dur-
ing an authorization check, the user-id is compared
with those in ACL entries. Operations that create
new objects (say files) use the same user-id for object
ownership.

Hadoop also supports a notion of group member-
ship; group membership is determined on the server-
side through a plugin that maps a user-id to its re-
spective a set of group-ids of the hosting organization.

3

There is special group identified as a supergroup; its
members are administrators who are permitted all
operations. There is no separate notion of a supe-
ruser. This has the advantage that our audit logs
show the actual user-ids of administrators.
MapReduce executes job tasks as the user who sub-

mitted the job and hence each compute node needs to
have an account for each user (more details below).
Hadoop services themselves (NameNode, DataN-

ode, JobTracker etc) are also configured with suit-
able credentials to authenticate with each other and
with clients so that clients can be sure that they are
communicating with Hadoop service component.

6 Authorization and ACLs

HDFS offers Unix-like permission with owner, group
and other permission bits for each file and directory.
We considered using only ACLs, but decided that our
users were more familiar with the Unix model and
that we could add ACLs later as in the Andrew File
System [Sat89].
MapReduce offers ACLs for job queues; they define

which users or groups can submit jobs to a queue and
change queue properties.
The other permission of a file or job queue ACL

would generally mean any user. This causes con-
cerns for some deployments since they want to limit
the cluster usage to a subset of their employees. We
address this concern via the notion of a Service-ACL
as first level check for a Hadoop service such as the
NameNode or JobTracker. Only users or groups in
the Service-ACL of the service can proceed on with
a service operation. The Service-ACL effectively de-
fines the set of users denoted by the other permis-
sion. Deployments that dont need to restrict the set
of users or restrict the other permission do not need
to configure the Service- ACL.

7 Authentication

7.1 Kerberos as the Primary Authen-

tication

We chose Kerberos [SNS88] for the primary authen-
tication in a secure deployment of Hadoop . We
also complement it with additional mechanisms as
explained later. Another widely used mechanism is
SSL. We choose Kerberos over SSL for the following
reasons.

1. Better performance Kerberos uses symmetric
key operations, which are orders of magnitude
faster than public key operations used by SSL.

2. Simpler user management For example, re-
voking a user can be done by simply deleting the
user from the centrally managed Kerberos Key
Distribution Center (KDC). Whereas in SSL, a
new certificate revocation list has to be gener-
ated and propagated to all servers.

7.2 Tokens as Supplementary Mech-

anisms

Security Tokens supplement the primary kerberos au-
thentication in Hadoop. Currently, there are three
forms of tokens:

1. Delegation token is a token that identifies a
user to a particular HDFS or MapReduce ser-
vice. It addresses the problem of propagating
the authentication performed at job submission
time to when the job is later executed. Details
are given in section 8.1

2. Block access token is a capability that gives
read or write permission to a particular HDFS
block. It addresses the problem that a DataN-
odes do not have any ACLs against which to au-
thorize block access. Details are given in section
8.3

3. A Job token identifies a MapReduce job its
tasks. Details are given in 9.3.1

Our RPC subsystem, described in 10.1, is pluggable
to allow the kerberos credentials or these tokens for
authentication.

8 HDFS

Communication between the client and the HDFS
service is composed of two halves:

• A RPC connection from the client to the Na-
meNode to, say, open or create a file. The RPC
connection can be authenticated via Kerberos or
via a delegation token. If the application is run-
ning on a computer where the user has logged
into Kerberos then Kerberos authentication is
sufficient. Delegation token is needed only when
an access is required as part of MapReduce job.

After checking permissions on the file path, Na-
meNode returns blockids, block locations and
block access tokens.

• A streaming socket connection is used to read
or write the block of a file at a DataNode. A

4

http://gost.isi.edu/publications/kerberos-neuman-tso.html
http://en.wikipedia.org/wiki/Secure_Sockets_Layer

datanode requires the client to supply a block-
access token generated by the NameNode for the
block being accessed.

Communications between the NameNode and
DataNodes is via RPC and mutual Kerberos authen-
tication is performed. Figure 2 shows the communi-
cation paths and the mechanism used to authenticate
these paths.

Name
Node

Data
Node

kerb(joe)

kerb(hdfs)

block token

Application
MapReduce

Task

block token

delg(joe)

Figure 2: HDFS authentication

8.1 Delegation Token

A user submitting a job authenticates with the Job
Tracker using Kerberos. The job is executed later,
possibly after the user has disconnected from the sys-
tem. How do we propagate the credentials? There
are several options:

• have the user pass the password to the job
tracker

• pass the Kerberos credentials (TGT or service
ticket for the NameNode)

• use a special delegation token

Passing the password is clearly unacceptable. we
choose to use a special delegation token instead of
passing the Keberos credentials (reasons explained
below).

After initial authentication to NameNode using
Kerberos credentials, a client obtains a delegation to-
ken, which is given to a job for subsequent authen-
tication to NameNode. The token is in fact a secret
key shared between the client and NameNode and
should be protected when passed over insecure chan-
nels. Anyone who gets it can impersonate as the user
on NameNode. Note that a client can only obtain
new delegation tokens by authenticating using Ker-
beros.

The format of delegation token is:

TokenID = {ownerID, renewerID, issueDate,

maxDate, sequenceNumber}

When a client obtains a delegation token from Na-
meNode, it specifies a renewer that can renew or can-
cel the token. By default, delegation tokens are valid
for 1 day from when they are issued and may be re-
newed up to a maximum of 7 days. Because MapRe-
duce jobs may last longer than the validity of the
delegation token, the JobTracker is specified as the
renewer. This allows the JobTracker to renew the to-
kens associated with a job once a day until the job
completes. When the job completes, the Job Tracker
requests the NameNode to cancel the job’s delegation
token. Renewing a delegation token does not change
the token, it just updates its expiration time on the
NameNode, and the old delegation token continues
to work in the MapReduce tasks.

The NameNode uses a secret key to generate dele-
gation tokens; the secret is stored persistently on the
NameNode. The persistent copy of the secret is used
when the NameNode restarts. A new secret is rolled
every 24 hours and the last 7 days worth of secrets
are kept so that previously generated delegation to-
kens will be accepted. The generated token is also
persistently.

8.2 Advantages of the Delegation To-

ken

Delegation tokens have some critical advantages over
using the Kerberos TGT or service ticket:

1. Performance On a MapReduce cluster, there
can be thousands of tasks running at the same
time. Many tasks starting at the same time
could swamp the KDC creating a bottleneck.

2. Credential renewal For tasks to use Kerberos,
the task owner’s Kerberos TGT or service ticket
needs to be delegated and made available to the
tasks. Both TGT and service ticket can be re-
newed for long-running jobs (up to max lifetime
set at initial issuing). However, during Kerberos
renewal, a new TGT or service ticket will be is-
sued, which needs to be distributed to all run-
ning tasks. With delegation tokens, the renewal
mechanism is designed so that the validity period
of a token can be extended on the NameNode,
while the token itself stays the same. Hence, no
new tokens need to be issued and pushed to run-
ning tasks.

3. Less damage when credential is compro-

mised A user’s Kerberos TGT may be used to
access services other than HDFS. If a delegated
TGT is used and compromised, the damage is

5

greater than using an HDFS-only credential (del-
egation token). On the other hand, using a del-
egated service ticket is equivalent to using a del-
egation token.

Kerberos is a 3-party protocol that solves the hard
problem of setting up an authenticated connection
between a client and a server that have never com-
municated with each other before (but they both reg-
istered with Kerberos KDC). Our delegation token is
also used to set up an authenticated connection be-
tween a client and a server (NameNode in this case).
The difference is that we assume the client and the
server had previously shared a secure connection (via
Kerberos), over which a delegation token can be ex-
changed. Hence, delegation token is essentially a
2-party protocol and much simpler than Kerberos.
However, we use Kerberos to bootstrap the initial
trust between a client and NameNode in order to ex-
change the delegation token for later use to set up
another secure connection between the client (actu-
ally job tasks launched on behalf of the client) and
the same NameNode.

8.3 Block Access Token

A block access tokens is a capability that enables its
holder to access certain HDFS data blocks. It is is-
sued by NameNode and used on DataNode. Block
access tokens are generated in such a way that their
authenticity can be verified by DataNode.
Block access tokens are meant to be lightweight

and short-lived. They are not renewed, revoked or
stored on disk. When a block access token expires,
the client simply gets a new one.
A block access token has the following format,

where keyID identifies the secret key used to gen-
erate the token, and accessModes can be any com-
bination of READ, or WRITE.

TokenID = {expirationDate, keyID, ownerID,

blockID, accessModes}

A block access token is valid on all DataNodes and
hence works for all the replicas of a block and even
if the block replica is moved. The secret key used to
compute token authenticator is randomly chosen by
NameNode and sent to DataNodes when they first
register with NameNode and periodically updated
during heartbeats. The secrets are not persistent and
a new one is generated every 10 hours. The block ac-
cess token is sent from the NameNode to the client
when it opens or creates a file. The client sends the
entire token to the DataNode as part of a read or
write request.

9 MapReduce

A MapReduce job involves the following stages (as
depicted in Figure 3:

1. A client connects to the JobTracker to request
a job id and an HDFS path to write the job
definition files. The MapReduce library code
writes the details of the job into the designated
HDFS staging directory and acquires the neces-
sary HDFS delegation tokens. All of the job files
are visible only to the user, but depend on HDFS
security.

2. The JobTracker receives the job and creates a
random secret, which is called the job token. The
job token is used to authenticate the job’s tasks
to the MapReduce framework.

3. Jobs are broken down into tasks, each of rep-
resents a portion of the work that needs to be
done. Since tasks (or the machine that they run
on) may fail, there can be multiple attempts for
each task. When a task attempt is assigned to a
specific TaskTracker, the TaskTracker creates a
secure environment for it. Since tasks from dif-
ferent users may run on the same compute node,
we have chosen to use the host operating sys-
tem’s protection environment and run the task
as the user. This enables use of the local file sys-
tem and operating system for isolation between
users in the cluster. The tokens for the job are
stored in the local file system and placed in the
task’s environment such that the task process
and any sub-processes will use the job’s tokens.

4. Each running task reports status to its Task-
Tracker and reduce tasks fetch map output from
various TaskTrackers. All of these accesses are
authenticated using the job token.

5. When the job completes (or fails), all of the
HDFS delegation tokens associated with the job
are revoked.

9.1 Job Submission

A client submitting a job or checking the status of a
job authenticates with the JobTracker using Kerberos
over RPC. For job submission, the client writes the
job configuration, the job classes, the input splits,
and the meta information about the input splits into
a directory, called the Job Staging directory, in their
home directory. This directory is protected as read,
write, and execute solely by the user.

6

Job
Tracker

Task
Tracker

kerb(joe)

kerb(mapreduce)

Task
Other

Service

HDFSHDFSHDFS

NFS

job token delg(joe)

trust

Application

other
credential

Figure 3: MapReduce authentication

Jobs (via its tasks) may access several different
HDFS and other services. Therefore, the job needs to
package the security credentials in a way that a task
can later look up. The job’s delegation tokens are
keyed by the NameNode’s URL. The other creden-
tials, for example, a username/password combination
for a certain HTTP service are stored similarly.
The client then uses RPC to pass the location of

the Staging directory and the security credentials to
the JobTracker.
The JobTracker reads parts of the job configura-

tion and store it in RAM. In order to read the job
configuration, the JobTracker uses the user’s delega-
tion token for HDFS. The JobTracker also generates
a random sequence of bytes to use as the job token,
which is described in section 9.3.1.
The security credentials passed by the client, and,

the job token are stored in the JobTracker’s system
directory in HDFS, which is only readable by the
’mapreduce’ user. To ensure that the delegation to-
kens do not expire, the JobTracker renews them pe-
riodically. When the job is finished, all of the delega-
tion tokens are invalidated.

9.2 Job and Task localization

TaskTrackers runs tasks of the jobs, and before run-
ning the first task of any job, it needs to set up a
secure environment for the same. The TaskTracker
launches a small setuid program (a relatively small
program written in C) to create the job directory, and
make the owner of that job directory the job-owner
user. A setuid program is used since root privileges
are required to assign ownership of the directory to
some other user. The setuid program also copies the
credentials file from the JobTracker’s system direc-
tory into this directory. The setuid program then
switches back to the job-owner user, and does the
rest of the localization work. That includes - copying

of the job files (configuration and the classes) from
the job-owner’s Staging directory. It uses the user’s
delegation token for HDFS from the credentials file
for these.

As part of the task launch, a task directory is cre-
ated per task within the job directory. This directory
stores the intermediate data of the task (for example,
the map output files).

The group ownership on the job directory and the
task directories is set to the ’mapreduce’ user. The
group ownership is set this way so that the Task-
Tracker can serve things like the map outputs to Re-
ducers later. Note that only the job-owner user and
the TaskTracker can read the contents of the job di-
rectory.

9.3 Task

The task runs as the user who submitted the job.
Since the ability to change user ids is limited to root
the setuid program is used here too. It launches the
task’s JVM as the correct job-owner user. The setuid
program also handles killing the JVM if the task is
killed. Running with the user’s user id ensures that
one user’s job can not send operating system signals
to either the TaskTracker or other user’s tasks. It
also ensures that local file permissions are sufficient
to keep information private.

9.3.1 Job Token

When the job is submitted, the JobTracker creates
a secret key that is only used by the tasks of the
job when identifying themselves to the framework.
As mentioned earlier, this token is stored as part of
the credentials file in the JobTracker’s system direc-
tory on HDFS. This token is used for the RPC via
DIGEST-MD5 when the Task communicates with the
TaskTracker to requests tasks or report status.

Additionally, this token is used by Pipes tasks,
which run as sub-processes of the MapReduce tasks.
Using this shared secret, the child and parent can
ensure that they both have the secret.

9.4 Shuffle

When a map task finishes, its output is given to the
TaskTracker that managed the map task. Each re-
duce in that job will contact the TaskTracker and
fetch its section of the output via HTTP. The frame-
work needs to ensure that other users may not ob-
tain the map outputs. The reduce task will compute
the HMAC-SHA1 of the requested URL and the cur-
rent timestamp and using the job token as the secret.
This HMAC-SHA1 will be sent along with the request

7

http://en.wikipedia.org/wiki/HMAC

and the TaskTracker will only serve the request if the
HMAC-SHA1 is the correct one for that URL and the
timestamp is within the last N minutes.

To ensure that the TaskTracker hasn’t been re-
placed with a trojan, the response header will in-
clude a HMAC-SHA1 generated from the requesting
HMAC-SHA1 and secured using the job token. The
shuffle in the reduce can verify that the response came
from the TaskTracker that it initially contacted.

The advantage of using HMAC-SHA1 over
DIGEST-MD5 for the authentication of the shuffle
is that it avoids a roundtrip between the server and
client. This is an important consideration since there
are many shuffle connections, each of which is trans-
ferring a small amount of data.

9.5 MapReduce Delegation Token

In some situations, an executing job needs to submit
another job; for this it needs to authenticate with the
Job Tracker. For this we use a another Delegation
token similar to the one generated by the NameNode
as described in section 8.1. Its generation, persistence
and use is identical to HDFS delegation token, except
that the Job-Tracker generates it. It is also obtained
at the initial job submission time.

9.6 Web UI

A critical part of MapReduce’s user interface is via
the JobTracker’s web UI. Since the majority of users
use this interface, it must also be secured. We imple-
mented a pluggable HTTP user authentication mech-
anism that allows each deploying organization to con-
figure their own browser based authentication in the
Hadoop configuration files. At Yahoo!, that plugin
uses Backyard Authentication.

Once the user is authenticated, the servlets will
need to check the user name against the owner of
the job to determine and enforce the allowable op-
erations. Most of the servlets will remain open to
everyone, but the ability view the stdout and stderr
of the tasks and to kill jobs and tasks will be limited
to the job-owner.

10 Implementation Details

10.1 RPC

Hadoop clients access most Hadoop services via
Hadoop’s RPC library. In insecure versions of
Hadoop, the user’s login name is determined from the
client OS and sent across as part of the connection

setup and are not authenticated; this is insecure be-
cause a knowledgeable client that understand the pro-
tocol can substitute any user-id. For authenticated
clusters, all RPC’s connect using Simple Authenti-
cation and Security Layer (SASL). SASL negotiates
a sub-protocol to use and Hadoop will support ei-
ther using Kerberos (via GSSAPI) or DIGEST-MD5.
Most applications run on the gateways use Kerberos
tickets, while tasks in MapReduce jobs use tokens.
The advantage of using SASL is that using a new
authentication scheme with Hadoop RPC would just
require implementing a SASL interface and modify-
ing a little bit of the glue in the RPC code.

The supported mechanisms are:

1. Kerberos The user gets a service ticket for the
service and authenticates using SASL/GSSAPI.
This is the standard Kerberos usage and mutu-
ally authenticates the client and the server.

2. DIGEST-MD5 When the client and server
share a secret, they can use SASL/DIGEST-
MD5 to authenticate to each other. This is much
cheaper than using Kerberos and doesn’t require
a third party such as the Kerberos KDC. The
two uses of DIGEST-MD5 will be the HDFS
and MapReduce delegation tokens in sections 8.1
and 9.5 and the MapReduce job tokens in sec-
tion 9.3.1.

The client loads any Kerberos tickets that are in
the user’s ticket cache. MapReduce also creates a
token cache that is loaded by the task. When the ap-
plication creates an RPC connection, it uses a token,
if an appropriate one is available. Otherwise, it uses
the Kerberos credentials.

Each RPC protocol defines the kind(s) of token it
will accept. On the client-side, all tokens consist of a
binary identifier, a binary password, the kind of the
token (delegation, block access, or job), and the par-
ticular service for this token (the specific JobTracker
or NameNode).

The token identifier is the serialization of a token
identifier object on the server that is specific to that
kind of token. The password is generated by the
server using HMAC-SHA1 on the token identifier and
a 20 byte secret key from Java’s SecureRandom class.
The secret keys are rolled periodically by the server
and, if necessary, stored as part of the server’s per-
sistent state for use if the server is restarted.

11 Auxiliary Services

There are several Auxiliary services, such as Oozie (a
workflow system), that act as proxies for user requests

8

http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2831.txt

of the Hadoop services. Workflows can be trigger by
time (as in Cron) or data availability. Production
workflows are usually configured to run at specific
times or based on data triggers. A workflow needs to
be executed on behalf of the user that submitted the
workflow.

This problem is similar to that of job submission
where we used the delegation token. Reusing the del-
egation token design was problematic because a work-
flow can be registered in the system for essentially for-
ever, being triggered periodically. This would mean
that the delegation token for workflows would need
to be renewed perpetually. As a result we instead de-
cided use the notion of trust. Hadoop services such as
HDFS and MapReduce allow one to declare specific
proxy services as being trusted in the sense that they
have authenticated with user and can be trusted to
act on behalf of the user. We have other auxiliary ser-
vices that also act on behalf of users and are trusted
by Hadoop.

An obvious question is that given that the notion
of trust was added, why didn’t we use it instead of the
delegation token. We wanted to limit which services
are trusted since extending a trust relationship is a
serious undertaking. In case of MapReduce jobs, we
could practically limit the lifetime of job in queue to
7 days and further could cancel the delegation token
when the job completed.

The HDFS and MapReduce services are configured
with a list of principals that are proxy-users, which
are trusted to act as other users. The configuration
file also specifies set of IP addresses from which the
proxy-user can connect. The proxy service (Oozie
in this case) authenticates as itself, but then access
functionality as if it is another user. We allow one
to specify for each proxy-user principal the group of
users on whose behalf the proxy may act.

When the proxy-user makes an RPC connection,
the RPC connection will include both the effective
and real user of the client. The server rejects con-
nections that: request a user that is not a valid user
for that service, request a user that is not in the user
group that is allowed for that proxy-user, or originate
from an IP address other than the blessed set for that
proxy-user.

12 Related Work

Hadoop is a complex distributed system that poses
a unique set of challenges for adding security. Some
of these problems are unique to systems like Hadoop.
Others, as individual problems, occur in other sys-
tems. Where possible we have used standard ap-

proaches and combined them with new solutions. The
overall set of solutions and how they interact, to our
knowledge are fairly unique and instructive to a de-
signer of complex distributed systems.

Hadoop’s central authentication mechanism is Ker-
beros; it is supplemented by delegation tokens,
capability-like access tokens and the notion of trust
for auxiliary services. The delegation token addresses
the problem of propagating the user’s credentials to
an executing job. We compared the mechanisms used
to generate, exchange, renew and cancel the dele-
gation token with those of Kerberos and its service
ticket in Section 8.1.

To address the shared execution environment we
use the security protection offered by the host sys-
tem on which the job tasks execute; this is common
in many parallel execution systems. Since Hadoop
offers additional services like HDFS and temporary
local storage we cannot simply rely on the authenti-
cation mechanisms offered by the host operating sys-
tem; our delegation and other tokens allow a task to
securely access these additional services. Condor, for
example, choose to push the delegation problem to
the applications themselves.

Like many systems such as Cedar [Bir85], we chose
to provide authentication at the RPC transport level.
This insulates the application logic from authentica-
tion details. It is also a place to plug in alternate
authentication mechanisms as is the case with our
tokens.

12.1 Condor

The Condor system[TTL05] is a distributed HPC
system that like MapReduce runs user applications
on a cluster of machines. Condor supports a vari-
ety of authentication schemes including PKI-based
GSI[FKTT98] and Kerberos. Although Kerberos cre-
dentials are accepted, those credentials are not passed
along to the job’s workers. Therefore, jobs that need
Kerberos tickets to access resources such as the An-
drew File System[HKM+88] need to propagate their
Kerberos tickets explicitly.

Condor’s authentication library creates and
caches session keys for each client to improve
performance[MBTS10] to prevent re-authenticating
on each client-server connection. Although these
session keys fill a similar role to our delegation
tokens, they are significantly different. In particular,
the session keys are not distributed between clients
and do not encode the user’s information.

Condor’s authentication mechanisms support prox-
ied users between trust domains. This is an impor-
tant use case for HPC system where grids are of-

9

ten composed of machines that are owned by dif-
ferent organizations. Hadoop clusters, on the other
hand, have very high network bandwidth require-
ments within the cluster and never span data centers
or organizations. Therefore, Hadoop has no require-
ment to support cross trust domain authentication.

12.2 Torque

Torque, which is another HPC grid solution, uses the
host operating system accounts for authentication.
To submit jobs, users must connect to the machine
running the master scheduler using the standard ssh
command. Because the user effectively logs into the
master machine, the server can check the user’s login
name directly.
Alternatively, Torque supports MUNGE authen-

tication from http://code.google.com/p/munge/.
MUNGE is an authentication service for HPC envi-
ronments that supports remote detection of another
process’ user or group ids. Both the client and server
host must be part of the same security realm that
have a shared secret key.

13 Conclusions

Hadoop, the system and its usage grew over the last 5
years. The early experimental use did not require se-
curity and there weren’t sufficient resources to design
and implement it. However as Hadoop’s use grew
at Yahoo!, security became critical. Hadoop’s elas-
tic allocation of resources and the scale at which it
is is typically deployed lends Hadoop to be shared
across tenants where security is critical if any stored
data is sensitive. Segregating sensitive data and cus-
tomers into private clusters was not practical or cost
effective. As a result, security was recently added
to Hadoop in spite of the axiom that states it is
best to design security in from the beginning. Ya-
hoo! invested 10 person years over the last two years
to design and implement security. The adoption of
Hadoop in commercial organizations is beginning and
security is a critical requirement.
Secure versions of Hadoop have been deployed at

Yahoo! for over a year. In that time, only a hand-
ful of security bugs have been discovered and fixed.
We were worried that security would add operational
burden; fortunately this was not the case. Kerberos
has also worked out well for us since our user accounts
were already in Kerberos. Our benchmarks show that
performance degradation has been less then 3%.
Our very early decision, even prior to adding secu-

rity, was to use the existing user accounts of the or-
ganization in which Hadoop is deployed rather then

have a separate notion of Hadoop accounts. This
made it easier for someone to quickly try and use
Hadoop, a critical factor in the growth and success
of Hadoop. For us, the use of existing Kerberos ac-
counts for our users was very convenient.

We were wise to supplement Kerberos with tokens
as Kerberos servers would not have scaled to tens of
thousands of concurrent Hadoop tasks. During the
design of delegation tokens, we had considered the
alternative of extending a Kerberos implementation
to incorporate mechanisms so that a Kerberos service
ticket could be delegated and renewed in the fashion
needed for Hadoop. It was a good decision to not do
that as it would have been challenging to have a mod-
ified Kerberos server adopted for non-Hadoop use in
our organization. Further it would have hindered the
wider-adoption of secure Hadoop in the industry.

Hadoop is implemented in Java. While Java is
known for providing good security mechanisms, they
are centered mostly around sandboxing rather then
for writing secure services. Our security mechanisms,
especially in the RPC layer, are designed to be plug-
gable; we believe it should be fairly easy to, say re-
place, our primary authentication mechanism Ker-
beros with another mechanism. Our approach has
the advantage that one could continue to use our to-
kens to supplement a different primary authentica-
tion mechanism.

14 Acknowledgements

Left out to anonymize the submission.

References

[Bir85] Andrew D. Birrell. Secure communica-
tion using remote procedure calls. ACM
Trans. Comput. Syst., 3:1–14, February
1985.

[DG04] Jeffrey Dean and Sanjay Ghemawat.
MapReduce: Simplified data processing
on large clusters. In OSDI, pages 137–
150, 2004.

[FKTT98] Ian Foster, Carl Kesselman, Gene
Tsudik, and Steven Tuecke. A security
architecture for computational grids. In
Proceedings of the 5th ACM Conference
on Computer and Communications Secu-
rity Conference, pages 83–92, 1998.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung. The Google File Sys-

10

http://code.google.com/p/munge/

tem. In Proceedings of the nineteenth
ACM symposium on Operating systems
principles, SOSP ’03, pages 29–43, New
York, NY, USA, 2003. ACM.

[HKM+88] John H. Howard, Michael L. Kazar,
Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale
and performance in a distributed file sys-
tem. ACM Trans. Comput. Syst., 6:51–
81, February 1988.

[MBTS10] Zach Miller, Dan Bradley, Todd Tannen-
baum, and Igor Sfiligoi. Flexible ses-
sion management in a distributed envi-
ronment. Journal of Physics: Conference
Series, 219(4):042017, 2010.

[Sat89] Mahadev Satyanarayanan. Integrating
security in a large distributed system.
ACM Trans. Comput. Syst., 7(3):247–
280, 1989.

[SKRC10] Konstantin Shvachko, Hairong Kuang,
Sanjay Radia, and Robert Chansler. The
Hadoop Distributed File System. Mass
Storage Systems and Technologies, IEEE
/ NASA Goddard Conference on, 0:1–10,
2010.

[SNS88] Jennifer G. Steiner, Clifford Neuman,
and Jeffrey I. Schiller. Kerberos: An au-
thentication service for open network sys-
tems. In in Usenix Conference Proceed-
ings, pages 191–202, 1988.

[TTL05] Douglas Thain, Todd Tannenbaum, and
Miron Livny. Distributed computing in
practice: the Condor experience. Con-
currency - Practice and Experience, 17(2-
4):323–356, 2005.

[VK83] Victor L. Voydock and Stephen T. Kent.
Security mechanisms in high-level net-
work protocols. ACM Comput. Surv.,
15(2):135–171, 1983.

11

	Overview
	Hadoop Background
	Challenges in Adding Security to Hadoop

	Secure and Non-Secure Deployments of Hadoop
	The Physical Environment

	Usage Scenarios
	Security Threats
	Users, Groups and Login
	Authorization and ACLs
	Authentication
	Kerberos as the Primary Authentication
	 Tokens as Supplementary Mechanisms

	HDFS
	Delegation Token
	Advantages of the Delegation Token
	Block Access Token

	MapReduce
	Job Submission
	Job and Task localization
	Task
	Job Token

	Shuffle
	MapReduce Delegation Token
	Web UI

	Implementation Details
	RPC

	Auxiliary Services
	Related Work
	Condor
	Torque

	Conclusions
	Acknowledgements

