

Extending Hadoop beyond MapReduce

Mahadev Konar Co-Founder @mahadevkonar (@hortonworks)

- Apache Hadoop since 2006 committer and PMC member
 - Developed and supported Map Reduce @Yahoo!
 - Core member of design and development team on MR Next Gen
- Apache ZooKeeper since 2008 committer and current PMC chair
 - Lead Apache ZooKeeper development and support @ Yahoo!
- Co-founder @hortonworks

- Apache Hadoop since 2006 committer and PMC member
 - Developed and supported Map Reduce @Yahoo!
 - Core member of design and development team for MR Next Gen
- Apache ZooKeeper since 2008 committer and current PMC chair
 - Lead Apache ZooKeeper development and support @ Yahoo!
- Co-founder @hortonworks

Agenda

- Overview
- Current Limitations and Requirements
- Architectures
- Improvements and Updates
- Q&A

Hadoop MapReduce Classic

- JobTracker
 - Manages cluster resources and job scheduling
- TaskTracker
 - Per-node agent
 - Manage tasks

Current Limitations

- Hard partition of resources into map and reduce slots
 - Low resource utilization
- Lacks support for alternate paradigms
 - Iterative applications implemented using MapReduce are 10x slower
 - Hacks for the likes of MPI/Graph Processing
- Lack of wire-compatible protocols
 - Client and cluster must be of same version
 - Applications and workflows cannot migrate to different clusters

Current Limitations

- Utilization
- Scalability
 - Maximum Cluster size 4,000 nodes
 - Maximum concurrent tasks 40,000
 - Coarse synchronization in JobTracker
- Single point of failure
 - Failure kills all queued and running jobs
 - Jobs need to be re-submitted by users
- Restart is very tricky due to complex state

Requirements

- Reliability
- Availability
- Utilization
- Wire Compatibility
- Agility & Evolution Ability for customers to control upgrades to the grid software stack.
- Scalability Clusters of 6,000-10,000 machines
 - Each machine with 16 cores, 48G/96G RAM, 24TB/36TB disks
 - 100,000+ concurrent tasks
 - 10,000 concurrent jobs

Design Centre

- Split up the two major functions of JobTracker
 - Cluster resource management
 - Application life-cycle management
- MapReduce becomes **user-land** library

Architecture

- Application
 - Application is a job submitted to the framework
 - Example Map Reduce Job
- Container
 - Basic unit of allocation
 - Example container A = 2GB, 1CPU
 - Replaces the fixed map/reduce slots

Architecture

- Resource Manager
 - Global resource scheduler
 - Hierarchical queues
- Node Manager
 - Per-machine agent
 - Manages the life-cycle of container
 - Container resource monitoring
- Application Master
 - Per-application
 - Manages application scheduling and task execution
 - E.g. MapReduce Application Master

Architecture

Architecture – Resource Manager

- Applications Manager
 - Responsible for launching and monitoring Application Masters (per Application process)
 - Restarts an Application Master on failure
- Scheduler
 - Responsible for allocating resources to the Application
- Resource Tracker
 - Responsible for managing the nodes in the cluster

- Utilization
 - Generic resource model
 - Memory
 - CPU
 - Disk b/q
 - Network b/w
 - Remove fixed partition of map and reduce slot
- Scalability
 - Application life-cycle management is very expensive
 - Partition resource management and application life-cycle management
 - Application management is distributed
 - Hardware trends Currently run clusters of 4,000 machines
 - 6,000 2012 machines > 12,000 2009 machines
 - <16+ cores, 48/96G, 24TB> v/s <8 cores, 16G, 4TB>

- Fault Tolerance and Availability
 - Resource Manager
 - No single point of failure state saved in ZooKeeper (coming soon)
 - Application Masters are restarted automatically on RM restart
 - Application Master
 - Optional failover via application-specific checkpoint
 - MapReduce applications pick up where they left off via state saved in HDFS
- Wire Compatibility
 - Protocols are wire-compatible
 - Old clients can talk to new servers
 - Rolling upgrades

- Innovation and Agility
 - MapReduce now becomes a user-land library
 - Multiple versions of MapReduce can run in the same cluster (a la Apache Pig)
 - Faster deployment cycles for improvements
 - Customers upgrade MapReduce versions on their schedule
 - Users can customize MapReduce

- Support for programming paradigms other than MapReduce
 - MPI
 - Master-Worker
 - Machine Learning
 - Iterative processing
 - Enabled by allowing the use of paradigm-specific application master
 - Run all on the same Hadoop cluster

Is it released?

- Available in 0.23.1 release
- Coming soon 0.23.2 release

Any Performance Gains?

- 2x+ across the board
- MapReduce
 - Unlock lots of improvements from Terasort record (Owen/Arun, 2009)
 - -Shuffle 30%+
 - -Small Jobs Uber AM
 - -Re-use task slots (container reuse)

More details: http://hortonworks.com/delivering-on-hadoop-next-benchmarking-performance/

Testing?

- Testing, *lots* of it
- Benchmarks (every release should be at least as good as the last one)
- Integration testing
 - -HBase
 - -Pig
 - -Hive
 - -Oozie
- Functional tests
 - -Nightly
 - -Over1000 functional tests for Map-Reduce alone
 - -Several hundred for Pig/Hive etc.
- Deployment discipline

Benchmarks

- Benchmark every part of the HDFS & MR pipeline
 - -HDFS read/write throughput
 - -NN operations
 - -Scan, Shuffle, Sort
- GridMixv3
 - -Run production *traces* in test clusters
 - -Thousands of jobs
 - -Stress mode v/s Replay mode

Deployment

- Alpha/Test (early UAT) in November 2011
 - Small scale (500-800 nodes)
- Alpha in February 2012
 - Majority of users
 - -~1000 nodes per cluster, > 2,000 nodes in all
- Beta
 - Misnomer: 10s of PB of storage
 - Significantly wide variety of applications and load
 - 4000+ nodes per cluster, > 15000 nodes in all
 - -Q2, 2012
- Production
 - -Well, it's production
 - Mid-to-late Q2 2012

Questions?

hadoop-0.23.1 (alpha release):

http://hadoop.apache.org/common/releases.html

Release Documentation:

http://hadoop.apache.org/common/docs/r0.23.1/

Hortonworks website: http://hortonworks.com/

Other Resources

Hadoop Summit

- -June 13-14
- -San Jose, California
- -www.Hadoopsummit.org

Hadoop Training and Certification

- Developing Solutions Using Apache Hadoop
- -Administering Apache Hadoop
- -http://hortonworks.com/training/

On-demand Webinars

- -Available now on Hortonworks website
- -<u>http://hortonworks.com/webinars/</u>

WATCH NOW

Thank You

@mahadevkonar

