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• Overview 

• Current Limitations and Requirements 

• Architectures 

• Improvements and Updates 

• Q&A 



Hadoop MapReduce Classic 

•  JobTracker 

–  Manages cluster resources and job scheduling 

•  TaskTracker 

–  Per-node agent 

–  Manage tasks 



Current Limitations 

•  Hard partition of resources into map and reduce slots 

–  Low resource utilization 

•  Lacks support for alternate paradigms 

–  Iterative applications implemented using MapReduce are 

10x slower 

–  Hacks for the likes of MPI/Graph Processing 

•  Lack of wire-compatible protocols  

–  Client and cluster must be of same version 

–  Applications and workflows cannot migrate to different 

clusters 
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Current Limitations 

•  Utilization 

•  Scalability 

–  Maximum Cluster size – 4,000 nodes 

–  Maximum concurrent tasks – 40,000 

–  Coarse synchronization in JobTracker 

•  Single point of failure  

–  Failure kills all queued and running jobs 

–  Jobs need to be re-submitted by users 

•  Restart is very tricky due to complex state 
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Requirements 

•  Reliability 

•  Availability 

•  Utilization 

•  Wire Compatibility 

•  Agility & Evolution – Ability for customers to control 

upgrades to the grid software stack. 

•  Scalability - Clusters of 6,000-10,000 machines 

–  Each machine with 16 cores, 48G/96G RAM, 24TB/36TB 

disks 

–  100,000+ concurrent tasks 

–  10,000 concurrent jobs 
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Design Centre 

•  Split up the two major functions of JobTracker 

–  Cluster resource management 

–  Application life-cycle management 

•  MapReduce becomes user-land library 
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Architecture 

•  Application 

–  Application is a job submitted to the framework 

–  Example –  Map Reduce Job 

•  Container 

–  Basic unit of allocation 

–  Example – container A = 2GB, 1CPU 

–  Replaces the fixed map/reduce slots 
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Architecture 

•  Resource Manager 

–  Global resource scheduler 

–  Hierarchical queues 

•  Node Manager 

–  Per-machine agent 

–  Manages the life-cycle of container 

–  Container resource monitoring 

•  Application Master 

–  Per-application 

–  Manages application scheduling and task execution 

–  E.g. MapReduce Application Master 
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Architecture – Resource Manager 
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•  Applications Manager 

–  Responsible for launching and monitoring Application Masters 

(per Application process) 

–  Restarts an Application Master on failure 

•  Scheduler  

–  Responsible for allocating resources to the Application 

•  Resource Tracker 

–  Responsible for managing the nodes in the cluster 



 Improvements vis-à-vis classic MapReduce 
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•  Utilization  

–  Generic resource model 
•  Memory 

•  CPU 

•  Disk b/q 

•  Network b/w 

–  Remove fixed partition of map and reduce slot 

•  Scalability  

–  Application life-cycle management is very expensive 

–  Partition resource management and application life-cycle 

management 

–  Application management is distributed 

–  Hardware trends - Currently run clusters of 4,000 machines 
•  6,000 2012 machines > 12,000 2009 machines 

•  <16+ cores, 48/96G, 24TB> v/s <8 cores, 16G, 4TB> 



•  Fault Tolerance and Availability  

–  Resource Manager 

•  No single point of failure – state saved in ZooKeeper (coming 

soon) 

•  Application Masters are restarted automatically on RM restart 

–  Application Master 

•  Optional failover via application-specific checkpoint 

•  MapReduce applications pick up where they left off via state saved 

in HDFS 

•  Wire Compatibility 

–  Protocols are wire-compatible 

–  Old clients can talk to new servers 

–  Rolling upgrades 
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 Improvements vis-à-vis classic MapReduce 



•  Innovation and Agility 

–  MapReduce now becomes a user-land library 

–  Multiple versions of MapReduce can run in the same cluster 

(a la Apache Pig) 

•  Faster deployment cycles for improvements 

–  Customers upgrade MapReduce versions on their schedule 

–  Users can customize MapReduce 
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 Improvements vis-à-vis classic MapReduce 



•  Support for programming paradigms other than 
MapReduce 

–  MPI 

–  Master-Worker 

–  Machine Learning 

–  Iterative processing 

–  Enabled by allowing the use of paradigm-specific application 
master 

–  Run all on the same Hadoop cluster  

17 

 Improvements vis-à-vis classic MapReduce 



Is it released? 

•  Available in 0.23.1 release 

•  Coming soon 0.23.2 release 
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Any Performance Gains? 
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• 2x+ across the board 

• MapReduce 

– Unlock lots of improvements from Terasort record (Owen/Arun, 

2009) 

– Shuffle 30%+ 

– Small Jobs – Uber AM 

– Re-use task slots (container reuse) 
 

More details: http://hortonworks.com/delivering-on-hadoop-next-benchmarking-performance/ 



Testing? 
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• Testing, *lots* of it 

• Benchmarks (every release should be at least as good as the last one) 

• Integration testing 

– HBase 

– Pig 

– Hive 

– Oozie 

• Functional tests 

– Nightly 

– Over1000 functional tests for Map-Reduce alone 

– Several hundred for Pig/Hive etc. 

• Deployment discipline 



Benchmarks 
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• Benchmark every part of the HDFS & MR pipeline 

– HDFS read/write throughput 

– NN operations 

– Scan, Shuffle, Sort 

• GridMixv3 

– Run production traces in test clusters 

– Thousands of jobs 

– Stress mode v/s Replay mode 



Deployment 
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• Alpha/Test (early UAT) in November 2011 

– Small scale (500-800 nodes) 

• Alpha in February 2012 

– Majority of users 

– ~1000 nodes per cluster, > 2,000 nodes in all 

• Beta 

– Misnomer: 10s of PB of storage 

– Significantly wide variety of applications and load 

–  4000+ nodes per cluster, > 15000 nodes in all 

– Q2, 2012 

• Production 

– Well, it’s production 

– Mid-to-late Q2 2012 



Questions? 
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hadoop-0.23.1 (alpha release): 

http://hadoop.apache.org/common/releases.html 

 

Release Documentation: 

http://hadoop.apache.org/common/docs/r0.23.1/ 

 

Hortonworks website:  

http://hortonworks.com/ 
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• Hadoop Summit 

– June 13-14 

– San Jose, California 

– www.Hadoopsummit.org     

• Hadoop Training and Certification 

– Developing Solutions Using Apache Hadoop 

– Administering Apache Hadoop 

– http://hortonworks.com/training/  

• On-demand Webinars 

– Available now on Hortonworks website 

– http://hortonworks.com/webinars/  

 



Thank You 
@mahadevkonar 


