
HDFS Federation

Page 1

Sanjay Radia

Founder and Architect @ Hortonworks

About Me

•  Apache Hadoop Committer and Member

of Hadoop PMC

•  Architect of core-Hadoop @ Yahoo
-  Focusing on HDFS, MapReduce scheduler,

Compatibility, etc.

•  PhD in Computer Science from the

University of Waterloo, Canada

Page 2

Agenda

•  HDFS Background

•  Current Limitations

•  Federation Architecture

•  Federation Details

•  Next Steps

•  Q&A

Page 3

Two main layers

•  Namespace

-  Consists of dirs, files and blocks

-  Supports create, delete, modify and list files

or dirs operations

•  Block Storage

-  Block Management

•  Datanode cluster membership

•  Supports create/delete/modify/get block

location operations

•  Manages replication and replica placement

-  Storage - provides read and write access to

blocks

HDFS Architecture
B

lo
c

k
 S

to
ra

g
e

N

a
m

e
s

p
a

c
e

Namenode

Block Management

NS

Storage

Datanode Datanode
…

Page 4

Implemented as

•  Single Namespace Volume

-  Namespace Volume = Namespace + Blocks

•  Single namenode with a namespace

-  Entire namespace is in memory

-  Provides Block Management

•  Datanodes store block replicas

-  Block files stored on local file system

HDFS Architecture
B

lo
c

k
 S

to
ra

g
e

N

a
m

e
s

p
a

c
e

Namenode

Block Management

NS

Storage

Datanode Datanode
…

Page 5

Limitation - Isolation

Poor Isolation

•  All the tenants share a single namespace

-  Separate volume for tenants is desirable

•  Lacks separate namespace for different application categories

or application requirements

-  Experimental apps can affect production apps

-  Example - HBase could use its own namespace

Page 6

Limitation - Scalability

Scalability

•  Storage scales horizontally - namespace doesn’t

•  Limited number of files, dirs and blocks

-  250 million files and blocks at 64GB Namenode heap size

•  Still a very large cluster

•  Facebook clusters are sized at ~70 PB storage

Performance

•  File system operations throughput limited by a single node

-  120K read ops/sec and 6000 write ops/sec

•  Support 4K clusters easily

•  Easily scalable to 20K write ops/sec by code improvements

Page 7

Namespace and Block Management are distinct layers

•  Tightly coupled due to co-location

•  Separating the layers makes it easier to evolve each layer

•  Separating services

-  Scaling block management independent of namespace is simpler

-  Simplifies Namespace and scaling it,

Block Storage could be a generic service

•  Namespace is one of the applications to use the service

•  Other services can be built directly on Block Storage

-  HBase

-  MR Tmp

-  Foreign namespaces

Limitation – Tight Coupling

Page 8

Page 9

Stated Problem

Isolation is a problem

for even small

clusters!

HDFS Federation

•  Multiple independent Namenodes and Namespace Volumes in a

cluster

-  Namespace Volume = Namespace + Block Pool

•  Block Storage as generic storage service

-  Set of blocks for a Namespace Volume is called a Block Pool

-  DNs store blocks for all the Namespace Volumes – no partitioning

Datanode 1 Datanode 2 Datanode m

...

 NS1

Foreig

n NS n

... ...

 NS k

 Block Pools

Pool n Pool k Pool 1

NN-1 NN-k NN-n

Common Storage

B
lo

c
k

 S
to

ra
g

e

N
a

m
e

s
p

a
c

e

Page 10

Key Ideas & Benefits

•  Distributed Namespace: Partitioned
across namenodes
-  Simple and Robust due to independent

masters

•  Each master serves a namespace volume

•  Preserves namenode stability – little namenode

code change

-  Scalability – 6K nodes, 100K tasks, 200PB and

1 billion files

HBase

Storage Service

HDFS

Namespace

Alternate NN
Implementation

MR tmp

Page 11

Key Ideas & Benefits

•  Block Pools enable generic storage service
-  Enables Namespace Volumes to be

independent of each other

-  Fuels innovation and Rapid development

•  New implementations of file systems and
Applications on top of block storage possible

•  New block pool categories – tmp storage,
distributed cache, small object storage

•  In future, move Block Management out of
namenode to separate set of nodes
-  Simplifies namespace/application

implementation

•  Distributed namenode becomes significantly
simpler

HBase

Storage Service

HDFS

Namespace

Alternate NN
Implementation

MR tmp

Page 12

•  Simple design

-  Little change to the Namenode, most changes in Datanode, Config and Tools

-  Core development in 4 months

-  Namespace and Block Management remain in Namenode

•  Block Management could be moved out of namenode in the future

•  Little impact on existing deployments

-  Single namenode configuration runs as is

•  Datanodes provide storage services for all the namenodes

-  Register with all the namenodes

-  Send periodic heartbeats and block reports to all the namenodes

-  Send block received/deleted for a block pool to corresponding namenode

HDFS Federation Details

Page 13

HDFS Federation Details

•  Cluster Web UI for better manageability

-  Provides cluster summary

-  Includes namenode list and summary of namenode status

-  Decommissioning status

•  Tools

-  Decommissioning works with multiple namespace

-  Balancer works with multiple namespaces

•  Both Datanode storage or Block Pool storage can be balanced

•  Namenode can be added/deleted in Federated cluster

-  No need to restart the cluster

•  Single configuration for all the nodes in the cluster

Page 14

Managing Namespaces

•  Federation has multiple namespaces

-  Don’t you need a single global namespace?

-  Some tenants want private namespace

-  Global? Key is to share the data and the names
used to access the data

•  A single global namespace is one way
share

home project

NS1 NS3 NS2

NS4

tmp

/
Client-side
mount-table

data

Page 15

Managing Namespaces

•  Client-side mount table is another
way to share

-  Shared mount-table => “global” shared
view

-  Personalized mount-table => per-
application view

•  Share the data that matter by mounting it

•  Client-side implementation of
mount tables

-  No single point of failure

-  No hotspot for root and top level
directories

home project

NS1 NS3 NS2

NS4

tmp

/
Client-side
mount-table

data

Page 16

Next Steps

•  Complete separation of namespace and block management
layers

-  Block storage as generic service

•  Partial namespace in memory for further scalability

•  Move partial namespace from one namenode to another

-  Namespace operation - no data copy

Page 17

•  Namenode as a container for
namespaces

-  Lots of small namespace volumes

•  Chosen per user/tenant/data feed

•  Mount tables for unified namespace

-  Can be managed by a central volume server

-  Move namespace from one container to
another for balancing

•  Combined with partial namespace

-  Choose number of namenodes to match

•  Sum of (Namespace working set)

•  Sum of (Namespace throughput)

Next Steps

Datanode Datanode …

…

Namenodes

Page 18

Thank You

More information

1.  HDFS-1052: HDFS Scalability with multiple namenodes

2.  Hadoop – 7426: user guide for how to use viewfs with federation

3.  An Introduction to HDFS Federation –

 https://hortonworks.com/an-introduction-to-hdfs-federation/

Page 19

Other Resources

Page 20
© Hortonworks Inc. 2012

• Next webinar: Improve Hive and HBase Integration

–  May 2, 2012 @ 10am PST

–  Register now :http://hortonworks.com/webinars/

• Hadoop Summit

– June 13-14

– San Jose, California

– www.Hadoopsummit.org

• Hadoop Training and Certification

– Developing Solutions Using Apache Hadoop

– Administering Apache Hadoop

– http://hortonworks.com/training/

Backup slides

Page 21

HDFS Federation Across Clusters

home

project data

tmp

/

Cluster 1

home

project data
tmp

/

Cluster 2

Application
mount-table
in Cluster 1

Application
mount-table
in Cluster 2

Page 22

