


Jeffrey Needham

Disruptive Possibilities



Disruptive Possibilities

by Jeffrey Needham

Copyright © 2013 Scale Abilities, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For
more information, contact our corporate/institutional sales department: (800)
998-9938 or corporate@oreilly.com.

February 2013: First Edition

Revision History for the First Edition:

2013-2-8: First release

2013-03-12: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449365677 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-449-36567-7

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449365677


Table of Contents

1. The Wall of Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
And Then There Was One                                                                  1
Commercial Supercomputing Comes of Age                                  2
A Stitch in Time                                                                                   2
The Yellow Elephant in the Room                                                     4
Scaling Yahoovians                                                                              5
Supercomputers Are Platforms                                                         6
Big Data! Big Bang!                                                                              7
Endless Possibilities                                                                             8

2. Big Data: The Ultimate Computing Platform. . . . . . . . . . . . . . . . . . . .  11
Introduction to Platforms                                                                 11
Come Fly with Me                                                                             12
Computing Platforms                                                                        12
The End of an Era                                                                              13
Back to the Future                                                                              14
Engineering Big Data Platforms                                                      15
The Art and Craft of Platform Engineering                                   16
KISS Me Kate                                                                                      17
Perpetual Prototyping                                                                       18
Optimize Everything at Internet Scale                                            19
The Response Time Continuum                                                      20
Epic Fail Insurance                                                                            21
Mind the Gap                                                                                     23
I’ll Take Silos for $1000, Alex                                                           24

3. Organizations: The Other Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
From Myelin to Metal                                                                       25

iii



Silos                                                                                                      26
Industrial Grain Elevators                                                                28
Platforms 1, Silos 0                                                                            29
Panic! Now!                                                                                        30
Fear and Loathing                                                                              30
Risky Business                                                                                    32
Probability and Outcome                                                                 32
Quantitative Qualities                                                                       33
The Soft Platform                                                                               34

4. The Reservoir of Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
The Actual Internet                                                                           35
Best of Inbred                                                                                     36
Drowning Not Waving                                                                      38
Spinning Rust                                                                                     39
A Spectrum of Perishability                                                             39
Enclosed Water Towers                                                                     41
The Big Data Water District                                                             42
The HDFS Reservoir                                                                         43
Third Eye Blind                                                                                  44
Spectrum of Analytic Visibility                                                        45
The Cost of Flexibility                                                                       47

5. Cloudy with a Chance of Meatballs: When Clouds Meet Big Data. . .  49
The Big Tease                                                                                      49
Scalability 101                                                                                     50
Motherboards and Apple Pie                                                           52
Being and Nothingness                                                                     53
Parity Is for Farmers                                                                          54
Google in Reverse                                                                              55
Isolated Thunderstorms                                                                    56
The Myth of Private Clouds                                                             57
My Other Data Center Is an RV Park                                             59
Converge Conventionally                                                                 59

6. Haystacks and Headgames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
The Demise of Counting                                                                  61
Lose the Haystack                                                                              63
Mind Another Gap                                                                            64
Believing Is Seeing                                                                             65
Spatial Intelligence                                                                             67

iv | Table of Contents



Associative Supercomputing                                                            68
Back from the Future                                                                        69
Acknowledgments                                                                             70

Table of Contents | v





CHAPTER 1

The Wall of Water

And Then There Was One
And then there was one—one ecosystem, one platform, one commu‐
nity—and most importantly, one force that retrains vendors to think
about customers again. Welcome to the tsunami that Hadoop, noSQL,
and all Internet-scale computing represents. Some enterprises, whose
businesses don’t appear to be about data, are far from the shoreline
where the sirens are faint. Other organizations that have been splash‐
ing around in the surf for decades now find themselves watching the
tide recede rapidly. The speed of the approaching wave is unprece‐
dented, even for an industry that has been committed, like any decent
youth movement, to innovation, self-destruction, and reinvention.
Welcome to the future of computing. Welcome to big data. Welcome
to the end of computing as we have known it for seventy years.

Big data is a type of supercomputing for commercial enterprises and
governments that will make it possible to monitor a pandemic as it
happens, anticipate where the next bank robbery will occur, optimize
fast-food supply chains, predict voter behavior on election day, and
forecast the volatility of political uprisings while they are happening.
The course of economic history will change when, not if, criminals
stand up their Hadoop clusters. So many seemingly diverse and un‐
related global activities will become part of the big data ecosystem.
Like any powerful technology, in the right hands it propels us toward
limitless possibilities. In the wrong hands, the consequences can be
unimaginably destructive.

1



The motivation to get big data is immediate for many organizations.
If a threatening organization gets the tech first, then the other orga‐
nization is in serious trouble. If Target gets it before Kohl’s or the Chi‐
nese navy gets it before the US navy or criminal organizations get it
before banks, then they will have a powerful advantage. The solutions
will require enterprises to be innovative at many levels, including
technical, financial, and organizational. As in the 1950s during the
cold war, whoever masters big data will win the arms race, and big data
is the arms race of the 21st century.

Commercial Supercomputing Comes of Age
Trends in the computing industry mimic those of fashion—if you wait
long enough, you will wear it again. Many of the technologies found
in big data have been circulating in the industry for decades, such as
clustering, parallel processing, and distributed file systems. Commer‐
cial supercomputing originated with companies operating at Internet
scale that needed to process ever-increasing numbers of users and their
data (Yahoo! in the 1990s, then Google and Facebook). However, they
needed to do this quickly and economically, in other words, affordably
at scale. This is Internet-scale commercial supercomputing, more
commonly known as big data.

Big data will bring disruptive changes to organizations and vendors,
and will reach far beyond networks of friends to the social network
that encompasses the planet. But with those changes come possibili‐
ties. Big data is not just this season’s trendy hemline; it is a must-have
piece that will last for generations.

A Stitch in Time
Large-scale computing systems are not new. Weather forecasting has
been a nasty big data problem since the beginning, when weather
models ran on a single supercomputer that could fill a gymnasium and
contained a couple of fast (for the 1970s) CPUs with very expensive
memory. Software in the 1970s was primitive, so most of the perfor‐
mance at that time was in the clever hardware engineering.

By the 1990s, software had improved to the point where a large pro‐
gram running on monolithic supercomputers could be broken into a
hundred smaller programs working at the same time on a hundred
workstations. When all the programs finished running, their results

2 | Chapter 1: The Wall of Water



were stitched together to form a weeklong weather simulation. Even
in the 1990s, the simulators used to take fifteen days to compute seven
days of weather. It really didn’t help farmers to find out that it rained
last week. Today, the parallel simulations for a weeklong forecast com‐
plete in hours.

As clairvoyant as weather forecasting appears to be, those programs
can’t predict the future; they attempt to simulate and model its behav‐
ior. Actual humans do the forecasting, which is both art and super‐
computing craft. Most weather forecasting agencies use a variety of
simulators that have different strengths. Simulators that are good at
predicting where a waterspout will make landfall in Louisiana are not
so great at predicting how the morning marine layer will affect air
operations at San Francisco International. Agency forecasters in each
region pore over the output of several simulations with differing sets
of initial conditions. They not only look at actual data from weather
stations, but also look out the window (or the meteorological equiv‐
alent—Doppler radar).

Although there is a lot of data involved, weather simulation is not
considered “Big Data” because it is so computationally intense. Com‐
puting problems in science (including meteorology and engineering)
are also known as high-performance computing (HPC) or scientific
supercomputing. The very first electronic computers were doing sci‐
entific computing, such as calculating trajectories of missiles or crack‐
ing codes, all of which were mathematical problems involving the sol‐
ution of millions of equations. Scientific computing also solves equa‐
tions for “non-scientific” problems such as rendering animated films.

Big data is the commercial equivalent of HPC, which could also be
called high-performance commercial computing or commercial su‐
percomputing. Big data can also solve large computing problems, but
it is less about equations and more about discovering patterns. In the
1960s, banks first used commercial computers for automating ac‐
counts and managing their credit card business. Today companies
such as Amazon, eBay, and large bricks-and-mortar retailers use com‐
mercial supercomputing to solve their Internet-scale business prob‐
lems, but commercial supercomputing can be used for much more
than analyzing bounced checks, discovering fraud, and managing
Facebook friends.

A Stitch in Time | 3



The Yellow Elephant in the Room
Hadoop is the first commercial supercomputing software platform
that works at scale and is affordable at scale. Hadoop exploits the parlor
trick of parallelism already well established in the HPC world. It was
developed in-house at Yahoo! to solve a very specific problem, but they
quickly realized its potential to tackle many other Internet-scale com‐
puting problems. Although Yahoo!’s fortunes have changed, it made
a huge and lasting contribution to the incubation of Google, Facebook,
and Big Data.

Hadoop was originally created to affordably process Yahoo!’s flood of
clickstream data, the history of the links a user clicks on. Since it could
be monetized to prospective advertisers, analysis of clickstream data
from tens of thousands of servers required an Internet-scale database
that was economical to build and operate. Yahoo! found most com‐
mercial solutions at the time were either incapable of scaling or unaf‐
fordable if they could scale, so Yahoo! had to build it from scratch, and
DIY commercial supercomputing was born.

Like Linux, Hadoop is an open-source software technology. Just as
Linux spawned commodity HPC clusters and clouds, Hadoop has
created a big data ecosystem of new products, old vendors, new start‐
ups, and disruptive possibilities. Because Hadoop is portable, it is not
just available on Linux. The ability to run an open source product like
Hadoop on a Microsoft operating system is significant and a triumph
for the open source community—a wild fantasy only ten years ago.

4 | Chapter 1: The Wall of Water



Scaling Yahoovians
Because Yahoo! was the first Internet-scale company, understanding
their history is key to understanding big data’s history. Jerry Yang and
Dave Filo started Yahoo! as a project to index the Web, but the problem
grew to the point where conventional strategies simply could not keep
up with the growth of content that needed to be indexed. Even before
Hadoop came along, Yahoo! required a computing platform that al‐
ways took the same amount of time to build the web index however
large the Web grew. Yahoo! realized they needed to borrow the paral‐
lelism trick from the HPC world to achieve scalability. Yahoo!’s com‐
puting grid became the cluster infrastructure that Hadoop was sub‐
sequently developed on.

Just as important as the technology that Yahoo! developed was how
their Engineering and Operations teams were reorganized to support
computing platforms of this magnitude. Yahoo!’s experience operating
a massive computing plant that spread across multiple locations led
them to reinvent the IT department. Complex platforms need to be
initially developed and deployed by small teams. Getting an organi‐
zation to scale up to support these platforms is an entirely different
matter, but that reinvention is just as crucial as getting the hardware
and software to scale.

Like most corporate departments from HR to Sales, IT organizations
traditionally achieved scalability by centralizing skills. There is no
question that having a small team of experts managing a thousand
storage arrays is more cost effective than paying the salaries for a huge
team, but Storage Admins don’t have a working knowledge of the
hundreds of applications on those arrays. Centralization trades gen‐
eralist working knowledge for cost efficiency and subject matter ex‐
pertise. Enterprises are starting to understand the unintended conse‐
quences of trade-offs made long ago which produced silos that will
inhibit their ability to implement big data.

Traditional IT organizations partition expertise and responsibilities,
which constrains collaboration between and among groups. Small er‐
rors due to misunderstandings might be tolerable on few small email
servers, but small errors on production supercomputers can cost cor‐
porations a lot of time and money. Even a 1% error can make a huge
difference. In the world of big data, 300 terabytes is merely Tiny Data,
but a 1% error in 300 terabytes is 3 million megabytes. Finding and
fixing errors at this scale can take countless hours. Yahoo! learned what

Scaling Yahoovians | 5



the HPC community that has been living with large clusters for about
twenty years knows. They learned that a small team with a working
knowledge of the entire platform works best. Silos of data and respon‐
sibility become impediments in both scientific supercomputing and
commercial supercomputing.

Internet-scale computing plants work because early practitioners
learned a key lesson: supercomputers are finely tuned platforms that
have many interdependent parts and don’t operate as silos of process‐
ing. Starting in the 1980s, however, customers were encouraged to
view the computing platform as a stack with autonomous layers of
functionality. This paradigm was easier to understand but with in‐
creasingly complex platforms, the layer metaphor began to cognitively
mask the underlying complexity, which hindered or even prevented
successful triage of performance and reliability problems. Like an F1
racing platform or a Boeing 737, supercomputer platforms must be
understood as a single collection of technologies or the efficiency and
manageability will be impaired.

Supercomputers Are Platforms
In the early history of the computer industry, systems were platforms
—they were called mainframes and typically came from a company
that also supplied a dedicated group of engineers in white shirts and
ties who worked alongside their customers to ensure the platform
performed when they handed over the keys. This method was suc‐
cessful as long as you enjoyed being an IBM customer—there has al‐
ways been a fine line between throat to choke and monopoly arro‐
gance. After IBM crossed this line in the 1960s, the resulting industry
offered more choice and better pricing but it became an industry of
silos.

Today, companies that dominate their silo still tend to behave like a
monopoly for as long as they can get away with it. As database, server,
and storage companies proliferated, IT organizations mirrored this
alignment with corresponding teams of database, server, and storage
experts. However, in order to stand up a big data cluster successfully,
every person who touches or works on the cluster must be physically
and organizationally close to one another. The collaborative teamwork
required for successful cluster deployments at this scale never, ever
happens in a sub-silo of a silo.

6 | Chapter 1: The Wall of Water



If your company wants to embrace big data or gather in that magical
place where Big Data Meets The Cloud, the IT organization will have
to tear down some silos and become more aware of the platform. Un‐
fortunately, most organizations do not handle any change well, let
alone rapid change. Chaos and disruption have been constants in this
industry, yet were always accompanied by possibility and innovation.
For enterprises that are willing to acknowledge and prepare for the
wall of water, big data will be a cleansing flood of new ideas and op‐
portunities.

Big Data! Big Bang!
As the big data ecosystem evolves over the next few years, it will in‐
undate vendors and customers in a number of ways.

First, the disruption to the silo mentality, both in IT organizations and
the industry that serves them, will be the Big Story of big data.

Second, the IT industry will be battered by the new technology of big
data because many of the products that pre-date Hadoop are laughably
unaffordable at scale. Big data hardware and software is hundreds of
times faster than existing enterprise-scale products and often thou‐
sands of times cheaper.

Third, technology as new and disruptive as big data is often resisted
by IT organizations because their corporate mandate requires them to
obsess about minimizing OPEX and not tolerate innovation, forcing
IT to be the big bad wolf of big data.

Fourth, IT organizations will be affected by the generation that repla‐
ces those who invested their careers in Oracle, Microsoft, and EMC.
The old adage “no one ever gets fired for buying (historically) IBM”
only applies to mature, established technology, not to immature, dis‐
ruptive technology. Big data is the most disruptive force this industry
has seen since the introduction of the relational database.

Fifth, big data requires data scientists and programmers to develop a
better understanding of how the data flows underneath them, includ‐
ing an introduction (or reintroduction) to the computing platform
that makes it possible. This may be outside of their comfort zones if
they are similarly entrenched within silos. Professionals willing to
learn new ways of collaborating, working, and thinking will prosper
and that prosperity is as much about highly efficient and small teams
of people as it is about highly efficient and large groups of servers.

Big Data! Big Bang! | 7



Sixth and finally, civil liberties and privacy will be compromised as
technology improvements make it affordable for any organization
(private, public or clandestine) to analyze the patterns of data and
behavior of anyone who uses a mobile phone.

Endless Possibilities
Today, big data isn’t just for social networking and machine-generated
web logs. Agencies and enterprises will find answers to questions that
they could never afford to ask and big data will help identify questions
that they never knew to ask.

For the first time, car manufacturers can afford to view their global
parts inventory spread over hundreds of plants and also collect the
petabytes of data coming from all the sensors that are now in most
vehicles. Other companies will be able to process and analyze vast
amounts of data while they are still in the field collecting it. Prospecting
for oil involves seismic trucks in the field collecting terabytes of data.
Previously, the data was taken back to an expensive datacenter and
transferred to expensive supercomputers, which took a lot of expen‐
sive time to process. Now a Hadoop cluster spread over a fleet of trucks
sitting in a motel parking lot could run a job overnight that provides
guidance on where the next day’s prospecting should take place. In the
next field over, farmers could plant thousands of environmental sen‐
sors that transmit data back to a Hadoop cluster running in a barn to
“watch” the crops grow. Hadoop clusters make it more affordable for
government agencies to analyze their data. The WHO and CDC will
be able to track regional or global outbreaks like H1N1 and SARS
almost as they happen.

Although big data makes it possible to process huge data sets, it is
parallelism that makes it happen quickly. Hadoop can also be used for
data sets that don’t qualify as big data, but still need to be processed in
parallel. Think about a tiny Hadoop cluster running as an artificial
retina.

Whether the wall of data arrives in the form of a tsunami, monsoon,
or even a fog, it must be collected into a commonly accessible and
affordable reservoir so that many of these possibilities can be realized.
This reservoir cannot be yet another drag-and-drop enterprise data
warehouse pyramid schema. The data contained in this reservoir, like
the fresh water found in real reservoirs, must sustain the future life of
the business.

8 | Chapter 1: The Wall of Water



Disruptive and opportunistic, big data is thrusting computer science
away from the classic John von Neumann style of computing—where
we finally stop looking at every piece of hay in the millions of haystacks
that big data makes possible and move toward a new form of spatial
supercomputing. Long before those steps are taken, big data will
change the course of history.

Endless Possibilities | 9





CHAPTER 2

Big Data: The Ultimate Computing
Platform

Introduction to Platforms
A platform is a collection of sub-systems or components that must
operate like one thing. A Formula One racing vehicle (which drivers
refer to as their platform) is the automobile equivalent of a supercom‐
puter. It has every aspect of its design fully optimized not simply for
performance, but performance per liter of gas or kilogram of curb
weight. A 2-litre engine that creates 320HP instead of 140HP does so
because it is more efficient. The engine with higher horsepower does
have better absolute performance, but performance really means ef‐
ficiency—like HP/KG and miles/gallon; or with computing platforms,
jobs executed/watt. Performance is always measured as a ratio of
something being accomplished for the effort expended.

The descendant of Honda’s F1 technology is now found in other cars
because optimized technology derived from the racing program en‐
abled Honda to design more powerful vehicles for consumers. A Hon‐
da Civic is just as much a platform as the F1. The engine, brakes,
steering, and suspension are designed so it feels like you’re driving a
car, not a collection of complex sub-components. Platforms can span
rivers, serve ads for shoes, and reserve seats on another notable plat‐
form—the kind with wings.

11



Come Fly with Me
The design and development of a new commercial aircraft is complex,
costly, and tangled in regulations, making the process justifiably slow
since design flaws can leave bodies scattered across the infield. Plat‐
forms that must be manufactured out of physical components require
more planning than platforms that are manufactured out of nothing
—such as software—because a new set of engines can’t be downloaded
every week. However, modern aircraft designers understand the value
of that flexible software stuff. First introduced in military fighters, “fly-
by-wire” technology refers to flying by electrical wire, not mechanical
wire (like bicycle brake cables). In traditional aircraft, the stick and
pedals were mechanically connected to the control surfaces on the
wings, so mechanical linkages controlled those surfaces. In a fly-by-
wire aircraft, the controls in the cockpit are inputs to a computer,
which controls motorized actuators that move the surfaces on the
wings and tail.

Fly-by-wire software is also used to prevent fighter pilots from flying
into unconsciousness. Pilots can bank into turns so steep that they
could black out, but software detects those conditions and limits turns
to keep pilots conscious and alive. Similar features apply to commer‐
cial aircraft and sport sedans, making those platforms safer and more
efficient. Unfortunately, if the fly-by-wire software (which is very easy
to change and “improve”) has bugs or design flaws, this can still result
in that mess on the infield that they prefer to avoid.

Computing Platforms
In the 1960s, Bank of America and IBM built one of the first credit
card processing systems. Although those early mainframes processed
just a fraction of the data compared to that of eBay or Amazon, the
engineering was complex for the day. Once credit cards became pop‐
ular, processing systems had to be built to handle the load and, more
importantly, handle the growth without constant re-engineering.
These early platforms were built around mainframes, peripheral
equipment (networks and storage), and software, all from a single
vendor. IBM also built a massive database system as a one-off project
for NASA during the Apollo program, which later evolved into a
product called IMS. Because IBM developed these solutions to specific
problems that large customers faced, the resulting systems were not
products yet. They were custom-built, highly integrated, and very ex‐

12 | Chapter 2: Big Data: The Ultimate Computing Platform



pensive platforms, which would later evolve into a viable business for
IBM.

These solutions, with all their interconnected hardware and software
components, were built as a single system, usually by a small, dedicated
team of specialists. Small teams cross-pollinated their expertise so an
expert in storage, networks, or databases acquired enough general,
working knowledge in other areas. These solutions often required de‐
velopment of new hardware and software technologies, so prolonged
cross-pollination of expertise was critical to the success of the project.
Team members’ close proximity allowed a body of working knowledge
to emerge that was critical to the success of the platform. Each team’s
job was not complete until they delivered a finished, integrated work‐
ing platform to the customer as a fully functional solution to the busi‐
ness problem.

The End of an Era
In the 1970s, IBM’s monopoly was curtailed enough for other startups
such as Amdahl, DEC, and Oracle to emerge and begin providing IBM
customers with alternatives. DEC built minicomputers that provided
superior price/performance to IBM mainframes, but without com‐
patibility. Amdahl (whose namesake, Gene, designed the IBM 390)
provided a compatible alternative that was cheaper than an IBM main‐
frame. Companies could develop and sell their own products or serv‐
ices and thrive in the post-monopoly world.

These pockets of alternative value eventually led to silos of vendors
and silos of expertise within IT departments that were aligned with
the vendors. Like Amdahl, Oracle directly benefited from technology
that IBM developed but never productized. Larry Ellison’s genius was
to take IBM’s relational database technology and place it on the semi‐
nal VAX and create one of the first enterprise software companies in
the post-mainframe era.

When products within silos or niches were sold to customers, putting
the system together was no longer any single supplier’s responsibility;
it became the customers’ job. Today there are so many vendors for
every imaginable silo—network switches, storage switches, storage
arrays, servers, operating systems, databases, language compilers, ap‐
plications—and all the complication and cost that comes with the re‐
sponsibility.

The End of an Era | 13



Big systems integrators like Accenture and Wipro attempt to fill this
gap, but they also operate within the constraints of IT departments
and the same organizational silos established by vendors. Silos are the
price paid for the post-mainframe alternatives to IBM. Silos obfuscate
the true nature of computing platforms as a single system of inter‐
connected hardware and software.

Back to the Future
Oracle profited from being a post-mainframe silo for decades as cus‐
tomers bought their database technology and ran it on Sun, HP, and
EMC hardware. As applications became more complex, constructing
platforms with silos became even more difficult. Enterprises attempt‐
ing to use Oracle’s clustering technology, RAC, found it nearly im‐
possible to set up. Since this failure could be a result of their customers’
own poor platform engineering (which exposed more bugs), Oracle
designed an engineered platform that combined all the components
and product engineering expertise, which made successful experien‐
ces possible. The resulting product, Exadata, was originally designed
for the data warehouse market, but found more success with main‐
stream Oracle RAC customers running applications like SAP.

Since Oracle was not a hardware company, the initial release of Exadata
was based on HP hardware, but Exadata was successful enough that

14 | Chapter 2: Big Data: The Ultimate Computing Platform



Oracle decided to source the hardware components themselves, which
partially motivated their acquisition of Sun. By sourcing all the hard‐
ware and software components in Exadata, Oracle resurrected the
one-stop shop mainframe model.

This one-stop shop model is also known as one throat to choke. On
its surface, it sounds appealing, but it assumes the throat can be
choked. Large customers such as Amgen, Citibank, and AT&T pur‐
chase so much equipment and services that they can choke any vendor
they like when things go south. However, for the vast majority of cus‐
tomers, because they are too large to manage their own databases
without support from Oracle and too small to demand good or timely
support from Oracle, one-stop shopping often reduces customers’
leverage with vendors.

Like Exadata, big data supercomputers need to be constructed as en‐
gineered platforms and this construction requires an engineering ap‐
proach where all the hardware and software components are treated
as a single system. That’s the platform way—the way it was before these
components were sold by silos of vendors.

Engineering Big Data Platforms
Big data platforms must operate and process data at a scale that leaves
little room for error. Like a Boeing 737, big data clusters must be built
for speed, scale, and efficiency. Many enterprises venturing into big
data don’t have experience building and operating supercomputers,
but many are now faced with that prospect. Platform awareness will
increase their chances of success with big data.

Thinking about computing systems in a holistic, organic, and inte‐
grative way may be considered crazy or not worth the bother; espe‐
cially when many systems built within organizations seem to operate
successfully as silos, just not at peak performance or efficiency. The
silo approach achieves operational economies of scale because that is
what is being measured. Measuring a platform’s efficiency might be
almost as hard as building an efficient platform in the first place.

Today, architects who would be responsible for building these new
platforms are mostly found in their respective IT departments where
they work as subject matter experts in their particular silo. Yet platform
architects, like building architects, must have an extensive working
knowledge of the entire platform, including the computer science bits,

Engineering Big Data Platforms | 15



the physical plant aspects, and the business value of the entire platform.
Because any component of the platform can be triaged, repaired, or
optimized, platform architects must be versed enough to carry on a
conversation with data center electricians, network designers, Linux
or java programmers, UI designers, and business owners and con‐
trollers.

Platform architects must be able and agile enough to dive into the
details deep-end with the electrician, and then climb out to dive into
another pool full of accountants. Too much knowledge or over-
familiarity with details in one area can distort the overall platform
perspective. Having the ability to selectively filter out details is re‐
quired because details come in all shapes and sizes and their relative
importance constantly shifts. The cliché “the devil is in the details” is
not quite accurate; the devil is usually in a handful of a zillion details
and that handful may change daily. Prioritizing the important details
and ignoring irrelevant details is one of the most important skills a
platform architect can posses.

Designing systems as platforms is a craft not taught, so those who do
pick it up stumble on it by accident, necessity, or desperation. This
adventure rarely comes with help or encouragement from co-workers,
employers, or vendors. It is a thankless learning process that can easily
alienate colleagues in other groups because it appears that platform
architects are trying to do everybody else’s job for them. The truth is
that platform architects are trying to a job nobody knows how to do
or is willing to do. As a result, most practitioners do not work within
IT organizations, but freelance around the rough edges where things
don’t work, scale, or recover. Freelance platform architects are typically
hired to triage problems that have customers at their wit’s end. Once
fires have been put out, there is a narrow window of opportunity to
educate customers about their own platform.

The Art and Craft of Platform Engineering
Platform engineering can be a great, yet hair-raising, adventure. In
order to build a platform you have never built before and to discover
things that your business never thought to look for, it will take a lot of
lab work and many experiments that need to fail early and often to
make sure the platform will deliver at scale.

Many enterprise IT departments and their corresponding vendor silos
continue to impair platform awareness. Many customers struggle with

16 | Chapter 2: Big Data: The Ultimate Computing Platform



big data because they want to apply enterprise-grade practices to
Internet-scale problems. Disaster recovery (DR) is a good example of
how the silo perspective rarely produces a strategy that effectively and
efficiently recovers a platform. Building a silo-centric DR plan forces
precise co-ordination across every single silo, which is organization‐
ally complex and expensive. When the storage group implements DR
strategies, they only do it for storage. When the application server
group implements DR, it’s limited to the application servers. Although
many companies get by with a silo approach to enterprise-scale dis‐
aster recovery, it’s rarely optimal. At Internet-scale, it doesn’t work at
all.

The tenets of platform engineering apply to both enterprise- and
Internet-scale computing. The only difference is that at enterprise
scale the mantras are optional. At Internet scale, they’re mandatory.
The art and craft of platform engineering at Internet scale demands
three critical tenets: avoid complexity, prototype perpetually, and op‐
timize everything.

KISS Me Kate
There are advantages to avoiding complexity at enterprise scale, but
at Internet scale “Keep It Simple, Sunshine” are words to live by. Even
a modest big data cluster with 20 racks, 400 nodes, and 4,800 disks
contains a lot of moving parts and is a complex organism. Complexity
contributes to two major failure categories: software bugs and operator
error.

Big data platforms must be designed to scale and continue to work in
the face of failure. Because the law of averages for a 400-node cluster
means failures are a constant, the software must provide the ability to
scale and keep the cluster continuously available in the face of com‐
ponent failures. The software supports high availability (HA) by pro‐
viding both redundancy of service through multiple pathways and
self-correcting techniques that reinstates data loss due to failures. In
traditional enterprise-scale software, HA capabilities are not valued as
features because HA does nothing new or improved–it just keeps
things working. But in supercomputer clusters with thousands of in‐
terconnected components, HA is as important as scalability.

Historically, HA software features were designed to address hardware
failures, but what happens when the HA software fails? Verifying soft‐
ware robustness is a difficult exercise in end-case testing that requires

KISS Me Kate | 17



a ruthless and costly devotion to negative testing. And even if vendors
are ruthless, the environment they use is rarely end-case identical to
their customers’ environment. No two platforms are alike unless they
are built to extremely repeatable specifications. For this very reason,
Internet-scale pioneers go to great lengths to minimize platform var‐
iance in an attempt to avoid conditions that might trigger end-case,
high-complexity software failures, which are very nasty to triage.

Perpetual Prototyping
Product development principles are a bit of a mixed bag and can
sometimes backfire. Although it might be noble to preserve design
principles that ensure product stability, the price paid for this is a scle‐
rotic software product lifecycle. Many enterprises now find themselves
under such immense competitive pressure to add features to their
computing plant that traditional approaches to product development
might not produce better results than the old approach when IT
projects were treated as projects, not products. Rapidly evolving re‐
quirements seem to break both the one-off project approach and the
bureaucratic software product lifecycle. In this new world, develop‐
ment, testing, and migration all begin to blur together as a single con‐
tinuous activity.

In the old software development model, there were meetings to discuss
the market requirements, and then more meetings to discuss and ne‐
gotiate the product requirements that would eventually appear in the
next release. Finally, the actual development of new features could take
years. By the time the features appeared using the old method, com‐
petitors using the new approach would have released several versions
that were more capable and less stable in the short run, but more ca‐
pable and stable far faster than with the old model. A long product
development cycle can result in an expensive, late, or uncompetitive
product. It also can lead to company failure. This traditional process
is simply not responsive enough for big data.

Because adding features quickly can destabilize any software system,
achieving equilibrium between innovation and stability is important.
To shift to a higher rate of release and still provide features that are
stable, many Internet-scale organizations develop their products using
an approach called perpetual prototyping (PP), which blurs together
the formerly discrete steps of prototyping, development, testing, and
release into a continuous loop. The features are created and delivered

18 | Chapter 2: Big Data: The Ultimate Computing Platform



so quickly that the released product (or big data platform) is a highly
functional prototype.

Companies using a PP style of development have pushed testing and
integration phases into sections of their production environment.
Their production environments (aka colos) are so vast that it is more
cost effective to use a small slice of users spread across the entire set
of colos than it is to construct a separate test colo. This users-as-
guinea-pigs model can obviously have negative effects on any users
who are subjected to untested code, but the simulation is extremely
realistic, and steps are taken to make sure the new features are not so
broken that it creates havoc.

The open source world has strategies that are similar to PP, where early
versions of code are pushed out to users with “tech preview” status. In
addition to branches that barely compile, as well as more stable pro‐
duction versions, tech preview operates like a warning label: it should
work as advertised, if it doesn’t, give us a shout. This code might even
be production-ready, but it has had limited exposure to production
environments.

Relative to traditional methods, open source development also trades
rapid evolution (feature time to market) for stability. In early stages of
development, the product improves quickly, but with quality some‐
times going sideways more often than in a traditional closed-source
model. As products or projects stabilize and fewer features are added,
developers lose interest and work on the next shiny bright thing and
the rate of change drops off. Even open source products eventually
stop changing or become stable enough that the loss of these devel‐
opers is really a sign of maturity.

Optimize Everything at Internet Scale
Internet-scale platforms must operate at such a high level of perfor‐
mance, complexity, and cost that their solution space must always be
optimized at the intersection of operations, economics, and architec‐
ture. These three dimensions are fundamental to any form of platform
design, whether the platform is a supercomputer cluster or a Honda
Civic. Platforms can still be successful without being optimized in all
dimensions, but the more optimized, the more efficient. Determining
whether a platform is as optimized as it should be is as difficult and
subjective as designing the platform in the first place. Enterprises that

Optimize Everything at Internet Scale | 19



want to fully realize the benefits of big data will also find themselves
with Internet-scale expectations of their platforms, staff, and vendors.

Big data platforms are monster computers. A single Hadoop cluster
with serious punch consists of hundreds of racks of servers and
switches. These racks do not include the surrounding infrastructure
used to get the bales of data onto the cluster. Many enterprises can set
up hundreds of racks of gear, but few can stand them up as a single
supercomputing platform. Getting a Hadoop cluster up and running
is hard enough, but optimizing it in all dimensions is a whole other
pool of fish. Optimization is about maximizing productivity and mak‐
ing the most of your precious resources, whether they are myelin,
metal, or baked from sand.

Optimizing a platform means spending money more wisely, not just
spending less on what might appear to be the same value. Any orga‐
nization can reduce costs by not spending money, but that’s not opti‐
mization—that’s just spending less money while assuming that quality
remains constant; as if laying off employees never affects the remain‐
ing staff. These kinds of “productivity improvements” are often mis‐
construed as optimization. Cutting costs always makes a business
more profitable, but not necessarily more efficient or strategically
positioned.

Every part of a platform that contributes to economic activity can be
optimized and all forms of activity have value or utility. “Bang for the
buck” is another way to say optimize everything; the bang comes from
anywhere, anything, or anyone. It can mean either spending fewer
bucks for a given bang, or squeezing more bang from a single buck. A
simple optimization strategy for data circuits running between Texas
and Montana could include improving the software engineering used
to route data, or buying a cheaper set of switches that provide just the
required capabilities, or re-negotiating service level agreements with
the carrier. The strategy to optimize everything is an operational ex‐
ample of perpetual prototyping.

The Response Time Continuum
High availability (HA) has mostly been concerned with avoiding out‐
ages. When customers book an airline reservation, the entire platform
must be available and responsive to make this possible. When parts of
a platform are not available (like the reservation database), another
copy of the database must be brought online so customers can con‐

20 | Chapter 2: Big Data: The Ultimate Computing Platform



tinue to book flights. Database teams pride themselves on designing
disaster recovery strategies that make this continued availability pos‐
sible, but if the rest of the platform isn’t designed to the same level of
availability, the customer experience suffers. HA isn’t just about keep‐
ing databases or storage up and running; it’s about keeping everything
up and running, from the user’s browser to the air conditioners in the
datacenter.

Engineering for high availability is not just about avoiding long out‐
ages, it is about any outage; even the ones that last just a few seconds.
When customers are waiting for the platform to return a selection of
airline flights that match their search criteria, a few seconds of un‐
availability in the reservation system might as well be forever, espe‐
cially if their reservation is lost. Availability is about the responsiveness
of the system, so the response time continuum encompasses the sec‐
onds or minutes customers must wait for their reservation to complete
as well as the hours or days it might take the system to recover from a
major disaster.

The responsiveness and degree of unavailability is determined both
by expectations and the perception of time. Some online systems dis‐
play messages (don’t move away from this screen until your reserva‐
tion is complete) or dials (working…working…working…) to man‐
age users’ expectations of responsiveness. It might be OK with cus‐
tomers to wait a minute or two longer to ensure that their airline tickets
are booked correctly and paid for only once, but currency traders feel
that a wait of 500 milliseconds is unbearable. Performance, scalability,
and recovery have always been perceived as separate topics of platform
design, but they’re all just sub-topics of availability engineering.

Epic Fail Insurance
Design doctrines for enterprise-grade platforms are based on estab‐
lished principles that make sense for critical enterprise-scale comput‐
ing systems, such as payroll. To be considered enterprise-grade, many
people think big data must embrace enterprise-scale doctrines. But

Epic Fail Insurance | 21



enterprise-grade doctrines are neither affordable nor designed for use
at Internet scale. Enterprise big data requires a new category that com‐
bines the robustness of enterprise-grade practice with Internet-scale
affordability.

A good example is the system redundancy strategy of no single point
of failure (noSPOF). System redundancy is a design principle applied
to platforms to allow them to function in the presence of abnormal
operating conditions. For example, in the past, Ethernet hardware in‐
terfaces used to be so unreliable they needed protection through re‐
dundancy. As those parts became integrated into servers, their relia‐
bility improved to the point where the software protecting against their
failure was less reliable than the hardware it was designed to protect.
At enterprise scale, it is often easy to implement the noSPOF policy
because the cost and complexity are tolerable. At Internet scale, HA
for computing platforms that often span multiple datacenters requires
more affordable strategies.

At Internet scale, not all single points of failure are created equal, so
applying the principle across all potential points of failure is difficult
to implement, complex to manage and very expensive. The top three
categories of system failure are physical plant, operator error, and
software bugs. In an attempt to reduce failures, the noSPOF policy
becomes overused, which introduces so much complexity that it ends
up reducing reliability. At Internet scale, these negative effects are
greatly magnified. Enterprise-scale systems are typically not highly
distributed and are more susceptible to just a few critical pathways of
failure. Internet-scale distributed systems also contain critical path‐
ways, but have fewer of them in addition to having many parallel ser‐
vice pathways.

All systems contain critical pathways, which if they fail, would create
some form of unavailability. When trying to figure out which points
of failure are critical, the first question is often “what happens if it
fails?” but the more important question is “what happens when it
fails?” The first question assumes deterministic failure and is often
expressed as Murphy’s Law: if it can fail, it will. In reality, everything
doesn’t fail. There are parts that might fail but not all parts do fail, so
it is important to assess the probability of a part failing. The next
question to ask is “what is the outcome of the failure”?

A critical pathway is defined both by its probability of occurring and
its severity of outcome. They all have a pathway severity index (PSI),

22 | Chapter 2: Big Data: The Ultimate Computing Platform



which is a combination of the probability and outcome (or reduction
in availability) from the failure of each pathway. Any pathway—
whether in hardware or software—with a high PSI requires a redun‐
dancy strategy. The noSPOF strategy is over-used at enterprise-scale
because it is often easier to apply it everywhere than it is to determine
which pathways have a high severity index.

The strategy of over-deploying noSPOF compromises reliability be‐
cause the complexity ends up increasing the PSI for the pathway. Dis‐
tributed systems have many more pathways, which spread out and
reduce the risk of critical pathway failures that could result in complete
platform failure. Because internet-scale platforms are highly distribut‐
ed, the effect of the distribution replaces just a few high PSI pathways
with hundreds of low PSI pathways. And low PSI pathways do not
require noSPOF. At either enterprise or Internet scale, rough estimates
of PSI can help prioritize where redundancy bets should be placed.
Locating aspects of design within the risk gap between recklessness
and aversion will result in a more optimized platform.

The noSPOF doctrine is enterprise-scale availability engineering. The
Internet-scale version must be solved and optimized within the eco‐
nomic, architectural, and operational dimensions that constrain any
platform. Avoiding epic failure at Internet scale mandates the need to
understand how distributed systems optimize for availability by keep‐
ing it simple and keeping it easy because that keeps it reliable.

Mind the Gap
In order to optimize aspects of any business, more accurate risk anal‐
ysis is required. And in order to optimize aspects of any platform, more
accurate risk analysis is required. There is a continuum of risk between
aversion and recklessness. Some businesses can afford to be risk averse,
but most cannot. To mitigate risk, corporations employ many strate‐
gies that require some degree of calculated risk. Sometimes it is cal‐
culated very accurately with numbers and sometimes employees just
have to make educated guesses.

In preparation for big data, corporations need to optimize some of the
computing systems that are now the heart and lungs of their business.
Accurately analyzing the risk of component failure within any plat‐
form (hardware, software, humans, or competitors) is a key to opti‐
mizing the efficiency of those platforms. It might seem odd to consider

Mind the Gap | 23



the competitive landscape or a group of employees to be platforms,
but all behave like interconnected systems.

I’ll Take Silos for $1000, Alex
One of the surprises awaiting enterprises is that big data is DIY su‐
percomputing. Whatever big data cluster they stand up, it comes from
the factory without applications or data. In order to populate the clus‐
ter, data must be emancipated from their own technical and organi‐
zational silos. Big data matters because of the business value it prom‐
ises. Data scientists and data wranglers will need to develop new meth‐
ods to analyze both the legacy data and the vast amounts of new data
flooding in. Both Development and Operations will be responsible for
the success of an enterprise’s big data initiative. The walls between the
business, data, organizations and platform cannot exist at Internet
scale.

Similar to your nervous system, a big data cluster is a highly inter‐
connected platform built from a collection of commodity parts. Neu‐
rons in the human brain are the building blocks of the nervous system,
but are very simple parts. The neurons in a jellyfish are also made from
these very simple parts. Just like you are far more than the sum of your
jellyfish parts (your brilliant personality being the nervous system’s
ultimate big data job), a big data cluster operates as a complex, inter‐
connected form of computing intelligence—almost human, almost
Watson.

24 | Chapter 2: Big Data: The Ultimate Computing Platform



CHAPTER 3

Organizations: The Other Platform

From Myelin to Metal
The world of advanced big data platforms is a strange place. Like a
Gilbert and Sullivan musical, there is drama, farce and mayhem in
every act. Once in a long while, the curtain rises, time stands still, and
as if by magic, it all works. Platform engineering at Internet scale is an
art form–a delicate balance of craft, money, personalities, and politics.
With the commoditization of IT, however, there is much less craft and
little art. Studies have shown that 60 to 80 percent of all IT projects fail
with billions of dollars wasted annually. The end results are not simply
inefficient, but frequently unusable. Projects that do finish are often
late, over budget, or missing most of their requirements.

There is immense pressure on CIOs to convert their IT infrastructure
into something as commodity as the plumbing in their office build‐
ings. Deploying platforms on the scale required for cloud computing
or big data will be the most complex projects IT groups undertake.
Managing complex projects of this magnitude requires a healthy IT
culture not only to ensure the successful discovery of the insights the
business craves, but to continuously deliver those insights in a cost-
effective way. Computing platforms deeply impact the corporation
they serve, not to mention the end-users, vendors, partners, and
shareholders. This mobius strip of humanity and technology lies at
the heart of the very model of a modern major enterprise. A socially
productive IT organization is a prerequisite for success with big data.

Humans organized themselves into hierarchies well before the water
cooler appeared. In a corporate organization, hierarchies try to bal‐

25



ance the specialization of labor and details only specialists worry about
by distilling minutiae so that leaders can make informed business de‐
cisions without being confused or overwhelmed. Distilling minutiae
relies on preserving the right amount of detail and abstracting the rest.
Because details are not created equal, the goal of abstraction is to pri‐
oritize the right details and mask the ones that cause confusion and
fear, both of which do a cracker jack job of impairing judgment. When
done well, a lot of good decisions can be made very quickly and course
corrections sometimes can make up for bad decisions. Since organi‐
zations are made up of people whose motivation, emotions and be‐
havior combine with their understanding of topics to produce those
judgments, it is rarely done well, let alone efficiently.

Silos
In large organizations, at the expense of having generalists organized
around the platform, IT departments are set up as hierarchies of spe‐
cialization to achieve economies of scale. Silos are a result of hierar‐
chies, which need to organize people into economically effective
groups. In IT, these silos are groups of specialists. A group of database
administrators (DBAs) are specialists that scale more economically
when their group must grow from supporting tens to hundreds of
databases. DBAs are specialists in databases, but not in storage. Storage
Admins are specialists with spindles, but inexperienced at tuning SQL
queries. However, fixing poor platform performance often requires
actual collaborative work among specialties, and merely attending
meetings together doesn’t cut it.

Smaller silos within silos often emerge in large corporations, for ex‐
ample, storage administration and database administration are typi‐
cally collected together in the Operations silo, whereas UI design and

26 | Chapter 3: Organizations: The Other Platform



application programming are contained in the Development silo. If
it’s politically difficult for DBAs to communicate with Storage Admins,
then DBAs and UI designers are barely aware of each other’s existence.

Although enterprises like to organize employees into silos and sub-
silos, the platform is not well served, and whenever the platform fails
to scale, recover or accommodate new business, each silo is potentially
implicated. All computing platforms span horizontally across organ‐
izations from the physical plant all the way out to the firewall. Big data
platforms also span horizontally, but they are more extreme—techni‐
cally, financially, and politically. The silo structure is not well suited
for developing and managing platforms at Internet scale.

Though they have administrative and economic value, silos suppress
cross-functional awareness and discourage generalists with a working
knowledge of the platform who could fill a very important technical
and diplomatic role. Some organizations have an Infrastructure or
Reference Architecture group populated by individuals who seem to
be the stewards of the platform. Both technical and non-technical ex‐
pertise must be represented in this group for the platform to be prop‐
erly represented; instead, it’s often staffed with experienced technical
experts with deep expertise in a limited area of the platform and fre‐
quently reports into Operations with little representation from De‐
velopment, Marketing, or Finance. If the infrastructure group is given
the authority to behave unilaterally, it compromises the diplomatic
mission. There is always a fine line between diplomacy, moral suasion
and unilateralism. Done well, this group serves both the platform and
business. Done poorly, this group ends up being just another silo.

Other companies construct “tiger teams” by forcing subject matter
experts from a number of different silos to work together temporarily.
In contrast, when teams of specialists in the ’50s and ’60s needed to
develop a working knowledge of those old mainframe systems, they
were given the latitude and time to cross-pollinate their skills as spe‐
cialists in one area and generalists in others. Never a part-time job,
specialists learning to be working generalists must be given the time
to understand the rest of the platform. Not all specialists will be com‐
fortable or adept at cultivating breadth of knowledge, so the casting of
tiger teams is extremely critical. Tiger teams fail when members are
miscast or never allowed to forget which silo they really work for.

Silos | 27



Industrial Grain Elevators
If it’s hard for IT departments to tear down silos, imagine how hard it
will be for the industry. Silos partially arose from the ashes of the one-
stop-shop, single-vendor mainframe model. Vendors specializing in
network or storage products found it easier to sell to network or stor‐
age groups and so reinforced the emerging silos of specialization. The
products from these companies were optimized for the specific dem‐
ographics of specialists, so they evolved away from a platform aware‐
ness and closer to the particular needs of each silo of subject matter
expertise. Poor interoperability of multiple vendors’ products is the
best example of this force in action and over time the platform became
obfuscated.

Some vendors are attempting a revival of the one-stop approach—
mostly to increase the growth of their business, not necessarily to
benefit the platform, their customers, or big data. But customers have
distant (or recent, if they own the odd PC) memories of one-stop that
may not be all that pleasant. Throat choking is harder than it looks
and, on closer inspection, the current one-stop attempts by larger
vendors can’t tear down their own internal silos (oddly enough, ven‐
dors have organizations too). They end up operating as several com‐
peting businesses under one brand.

Vendors who are now attempting one-stop shops still prefer the silo
model, especially if they have franchise strength. Vendors who aspire

28 | Chapter 3: Organizations: The Other Platform



to use big data to grow their current portfolio of products certainly
don’t want to sacrifice their existing revenue base. For some vendors,
it will be a zero sum game. For others, it will be far less than zero
because the economic rules of the big data ecosystem are unlike the
economic rules of the current enterprise ecosystem. Like Kodak,
whose business and margins were based on film not memories, tra‐
ditional enterprise vendors will need to base their big data offerings
on insight, not on capture or strand.

In the past decade, customers have grown increasingly dependent on
advice from vendors. The codependency between vendors and IT de‐
partments is a well-entrenched, natural consequence of silos. It is now
difficult for IT groups to be informed consumers and the commodi‐
tization of staff has not helped. Drained of advanced engineering tal‐
ent, IT has out-sourced this expertise to service companies or even
vendors. For example, when enterprises take advice on how to do dis‐
aster recovery from their storage and database vendors, they get com‐
pletely different answers. Vendors always try to convince customers
that their silo-centric solution is superior, however vendors don’t al‐
ways have their customers’ best interests in mind.

Like performance and scalability, disaster recovery is one of the tough‐
er problems in platform engineering. Even with the benefit of a plat‐
form perspective, doing DR well requires a delicate balance of speed,
budget, and a good set of dice. Attempting it from within silos is far
more painful, since silo-centric solutions are usually about how to
avoid being implicated in the event of an actual disaster. Most solutions
consist of a piecemeal strategy cobbled together from competing ven‐
dors. Once again, the platform takes it on the chin.

Platforms 1, Silos 0
The plethora of intertwined software and hardware that are part of a
platform stubbornly refuse to operate like a dozen independent silos.
Disaster recovery and performance problems are tough to triage even
with a modest enterprise platform, but they take on a degree of com‐
plexity that is exponential in a 400-node cluster. Commercial super‐
computers must transcend both the mechanics and politics of silos to
be successful.

When performance problems are triaged within silos, the result is
often like a game of schoolyard tag. The group with the most glaring
symptoms gets tagged. If that’s storage, then the admins must either

Platforms 1, Silos 0 | 29



find and fix the storage problem or “prove” that it wasn’t their fault.
The storage group rarely understands application code and they are
not encouraged to cross-pollinate with application developers. Like‐
wise, many developers are far removed from the physical reality of the
platform underneath them and they have no incentive to understand
what happens to the platform when they add a seemingly insignificant
feature that results in an extra 300,000 disk reads. Whenever some‐
thing goes seriously wrong within a computing platform, the organi‐
zation of silos demands accountability. There are usually a couple of
platform-aware individuals lurking within IT departments; they’re the
ones who determine that the “insignificant” feature caused the “stor‐
age” performance problem. The good news for each silo is that it’s not
just their fault. The bad news is that often it’s everyone’s fault.

Advances such as Java and hypervisors, and a general reliance on
treating the computing platform in abstract terms have reinforced the
notion that it is no longer necessary to understand how computers
actually work. Big data is about performance and scalability first, so
knowing what the hardware is doing with the software will become
important again.

Panic! Now!
When everything is working as planned and being delivered on time
within budget, silos of specialists are economical and make sense to
the organization. When platforms fail and the underlying problem is
masked by silos, statements like “perception is reality” start to swirl
around the water cooler. If you hear this enough where you work, you
should start to move towards higher ground. As various groups
scramble to make sure the problem is not theirs, the combination of
fear and ignorance starts to set in and results in impaired judgment or
panic.

Silos must compete for budgets, up-time stats and political credibility,
which frequently leaves the platform and business undefended. When
the organization is more important than the business, companies can
become their own worst enemy.

Fear and Loathing
Organizations of any size are comprised of humans who all have vary‐
ing tolerances for fear and risk. In order to make good judgments, our

30 | Chapter 3: Organizations: The Other Platform



brains must discern and sort complex and competing bits of infor‐
mation. Fear does weird things to the human brain by disrupting its
ability to make good judgments. The impairment from this disruption
can lead to dysfunctional behavior. But we are not robots; making
decisions without any emotion at all is considered a psychological
disorder. Studies have shown that every single decision has an emo‐
tional component, no matter how insignificant. Research subjects with
these pathways fully disrupted find it difficult to even choose what
cereal to have for breakfast. Decision-making is a delicate balance of
signals between the emotional part of the brain (amygdala) and the
thinking part (ventromedial prefrontal cortex).

What does good judgment have to do with big data? Everything. For
organizations amped on ego and ambition, combined with the intol‐
erance for error that comes with the complexity and scale of big data,
this means a lot of decisions will have to be made quickly and without
all the information. And that requires judgment.

Fear and anger are two sides of the same impairment coin. The emo‐
tional, primitive part of the brain is responsible for fight or flight. Fear
is flight, anger is fight–both are good at impairing judgment. For ex‐
ample, if I’m meeting with someone that I’ve clashed with on a previ‐
ous project, my emotional perception of their opinion will be distorted
by my feelings towards them. I might unconsciously misinterpret what
they are saying due to body language, tone of voice, or choice of words–
all of which communicate information. Also, as I listen for subtext,
plot their downfall, or construct a whole new conspiracy theory, I
might not be really listening to them at all.

Making good decisions isn’t just about not being emotionally impaired
by fear or anger. It also isn’t about knowing all the details, but about
prioritizing just the right few. Since there are always too many details,
the human brain must learn how to find those few that matter. Finding
them requires our old reptile and new mammal brains to dance; fear
and anger definitely kill the music.

A business relies on its staff to sort and prioritize details every day.
Experience and informed judgment is required. It’s called business
acumen or an educated guess. When you guess right, you are a hero;
when you guess wrong, that’s OK—you just need to guess again, often
with no new information, but mistakes are how humans learn. Big data
is a new, completely uncharted world with problems that have never

Fear and Loathing | 31



been encountered. Right or wrong, those who guess faster will learn
faster. Prepare to make a lot of mistakes and learn at lot.

Risky Business
Small companies have a cultural acceptance for risk that gets diluted
as the company grows. Small companies may appear reckless when
viewed from the risk-averse end of the spectrum where large compa‐
nies operate; an acceptance for taking calculated risks is not reckless.
Risk aversion often seems safe (better safe than sorry), but you can be
sorry if you are too safe.

Every year, surfers from all over the world attempt to surf twenty-story
waves off the coast of Northern California at Maverick’s. From the
viewpoint of risk aversion, these surfers seem like lunatics. Because a
reckless surfer is a dead surfer, surfers must be effective risk techni‐
cians. Similarly, rock climbers on the face of El Capitan in Yosemite
National Park, especially the free climb variety, are also considered
lunatics. In exchange for determining risks, which involves invaluable
intuition and years of experience, surfers and climbers are rewarded
with exhilarating experiences.

An organization’s operating risk spectrum is the gap between aversion
and recklessness. In business, being risk averse is more about percep‐
tion of risk than actual risk; so the gap between aversion and reck‐
lessness often contains competitors who are willing to take on more
risk. If you don’t believe there is a large gap, then you might be com‐
placent about the competition; but the gap can be wide enough to
accommodate both competitors and opportunities for new business.
Disruptive forces like big data also widen the gap and accurately per‐
ceiving this gap relies heavily on how well your old and new brains
can get along. Making better decisions requires us to become better at
accurately assessing risk.

Probability and Outcome
Probability is an idea; outcome is an experience. Humans tend to per‐
ceive risk based on outcome rather than probability. Like most math‐
ematics, probability is based on how the natural world functions at an
empirical level and probability is an idea, whereas outcome is groun‐
ded in experience. Using the classic case of driving vs. flying, though
we know it’s far riskier to drive down US Interstate 5 than to catch the

32 | Chapter 3: Organizations: The Other Platform



shuttle to Burbank, this doesn’t wash with the human psyche. If a plane
crashes, the subsequent outcome of something very bad happening
(i.e., death) is almost certain. However, the probability of being killed
in a car crash is less certain than taking that commuter flight. You have
a better chance of surviving the outcome, so it seems less risky. Severity
of outcome has no bearing on the probability of the accident in the
first place, but this is how our brains work. Good risk technicians must
fight this instinct in order to do things mere mortals would never
dream of–surf the waves at Maverick’s or surf the capital burndown of
a startup that takes on IBM.

Deterministic risk analysis is another example of aversion. In an at‐
tempt to protect the business from all possible outcomes, instead of all
probable outcomes, organizations often assume the worst. They as‐
sume that failures will occur. Deterministic analysis assumes that all
possible failures will happen; probabilistic analysis assumes the com‐
ponents that are most likely to fail are the ones that actually fail. Being
a better risk technician will help to optimize the platform.

Quantitative Qualities
One sure-fire way to get accountants and controllers mad at you is to
ask them to quantify qualitative risk. Turns out, though this is not
happening in spreadsheets, it’s happening at an intuitive level all the
time in the form of the thousands of business decisions made every
day. An easy example of qualitative risk analysis is found when making
a decision about recruiting new employees. The decision to hire one
candidate over another, though a subjective judgment, involves the
brain doing what it does well: making decisions with qualitative in‐
formation.

There is nothing mathematical about intuition; so it’s an unmention‐
able word in many organizations. Not because it isn’t used everyday
to make decisions, but because it appears to be biased or non-linear
or random. Good intuition is far from random and can allow for very
quick decision-making. Having the patience to listen for and recognize
good intuition in others makes it possible for people to make better
decisions faster.

Quantitative Qualities | 33



The Soft Platform
Organizations don’t kill projects; people kill projects, and sometimes
projects kill people. All are bad clichés; but it seems that some organ‐
izations have become bad clichés too. Getting humans to work as a
well-oiled machine is the hardest part of the soft platform—hard to
understand, hard to preserve the innovation, and hard to change.

Changes in organizational behavior happen at a glacial rate relative to
the technology and business conditions that accompany trends like
big data. Humans simply can’t change their patterns of behavior fast
enough to keep up with technological advances. It’s a cultural impe‐
dance mismatch. The rate of acceptance of big data—which came up
quickly on the heels of the cloud computing craze—will be necessarily
slow and erratic. “We just figured out clouds, and now you want us to
do what?”

Big data also brings with it a shift in the demographics of professionals
as open source programmers and data scientists bring energy and new
approaches to an established industry. Anthropology and technology
are converging to produce a major shift in how everyone consumes
data–enterprises, customers, agencies, and even the researchers study‐
ing how humans behave in organizations.

34 | Chapter 3: Organizations: The Other Platform



CHAPTER 4

The Reservoir of Data

The Actual Internet
We wouldn’t be talking about big data at all if it weren’t for the “ex‐
plosion” of the Internet. Several technologies that were drifting around
in the 1980s eventually converged to make the first boom possible.
Mainstream consumer culture experienced it as if the boom came
from nowhere. Since the 1990s, the Internet has taken a few more
evolutionary steps. Running a business or computing plant at Internet
scale had never been done before Yahoo!, Google and then Facebook
attempted it. They solved many engineering problems that arose while
taking commercial supercomputing from enterprise scale to Internet
scale. But as Yahoo! has since demonstrated, making a sustainably
profitable business out of Internet-scale computing is a different mat‐
ter.

Traditional enterprises (companies that make films, 737s, or soap) are
for the first time experiencing Internet-scale computing problems, but
they’re still stuck with their decades-old, entrenched approach to
enterprise-scale computing; for those who remember what happened
in the 1990s, or more to the point what didn’t happen, skepticism about
the Miracle of Big Data is justified. Taken from the perspective that
early technologies (for example, Java, Apache, or anything involving
billions of users) are always unproven, and the first boom is always
going to be wishful thinking. There was a lot of wishful thinking going
on in the 1990s.

Many startup companies built prototypes using early technologies like
the Java programming language, which made it easier to quickly de‐

35



velop applications. If a startup’s idea caught on, then the problem of
too many customers quickly overwhelmed the designers’ intentions.
Good problem to have. Building platforms to scale requires a lot of
scaffolding “tax” up front and although a startup might wish for too
many customers, building a system from the get-go to handle millions
of customers was expensive, complex, and optimistic even for Silicon
Valley startups in the 1990s.

An application could be designed to quickly demonstrate that pet food
could be purchased online, but demonstrating this for millions of pet
owners would require the annoying platform-engineering bits to
work, which rarely came into question during angel, seed, or mezza‐
nine phases of funding. Startups with a good idea and a reasonable
application could soon be crushed by their inability to scale. Compa‐
nies trying to design a killer app would be pressured to constantly
tweak the design in an attempt to land millions of customers in one
quarter. Core design requirements could reverse every few weeks and
this redesign whirlpool became inescapable. Very few companies sur‐
vived.

Amazon is often cited as a survivor, and many of the original core
architects who built Amazon came from Wal-Mart, which had built
one of the first at-scale inventory management platforms on the planet.
Wal-Mart did such an impressive job that they changed forever the
rules of supply chains, inventory, and retail. Startup companies that
did not acquire a modest amount of platform engineering chops or
could not constrain their instinct to “add one more thing” did not
survive, despite having a viable business plan and several hundred
thousand customers.

Best of Inbred
Platform engineering embodies the mantra “the whole is more than
the sum of its parts” and can make up for many deficiencies in par‐
ticular technologies. Components of a platform do not have to be ma‐
ture or stable—that is the best-of-breed myth corresponding to the
current silo view of enterprise engineering. A best-of-breed platform
does not require all components to be best of breed, nor will a platform
assembled from best-of-breed technology necessarily be best of breed
either. Best of breed is a concept introduced by the enterprise silo
vendors; it’s often the product with the most brand strength in a given
silo.

36 | Chapter 4: The Reservoir of Data



Best of breed is unaffordable at Internet-scale. Building successful
platforms can be done with a broader pedigree among components
because the pedigree is dictated by scalability and affordability. If ar‐
chitects can make a data center full of noSQL database engines meet
the business requirements, then they can get by without the sophisti‐
cation and expense of Oracle. This doesn’t mean MySQL can replace
Oracle or that surgically deploying DB2 is off the table either. But if
the platform needs to handle hundreds of millions of users affordably,
the secret sauce is in the platform engineering, not in the aggregation
of best-of-breed products.

Some enterprises have been living with and managing their big data
for a long time. Healthcare companies have been trying to archive
patient histories since they built their earliest databases. Some of these
records live on legacy arrays and some are hibernating on tape reels.
In order to discover insights from legacy data, it must be accessible.
Moving that data into a shiny new Hadoop cluster will require solving
several platform-engineering problems that will make standing up
that shiny new object look easy.

There’s so much pent up demand for big data because companies have
been trying to do it for twenty years but vendors couldn’t offer solu‐
tions that were affordable at scale. And because data lives everywhere,
no single product or suite of products from any given vendor can really
“solve” big data problems. Even enterprises that attempted the one-
stop-shop approach over the last decade have ended up with several,
if not many, isolated or stranded sources of data. Customers now have
sources stranded on Greenplum, Netezza and Exadata, and they risk
stranding new sources on Cassandra, Mongo, and even Hadoop.

Like scientific supercomputing, commercial supercomputing cannot
be solved using products from a single vendor. Big data consists of a
broad spectrum of purpose-built workloads, but traditional business
intelligence products are either too general-purpose to address this
diverse spectrum or too purpose-built and can only address a narrow
range of workloads. Big data requires a strange, new hybrid platform-
product, but this will give software vendors fits because a well-
designed, heterogeneous product that can be form-fitted to each en‐
terprise’s very peculiar mosh pit of old and new data makes for a lousy
SKU and a complicated story. Vendors don’t like complicated stories.

Best of Inbred | 37



Drowning Not Waving
By the time you read this, big data may already be a cliché or routinely
parodied on YouTube. For many enterprises, big data was a cruel and
expensive joke twenty years ago. The data warehousing products cre‐
ated in the 1990s were outgrowths of major RDBMS vendors who got
an early glimpse of the tsunami. This first generation technology was
made possible due to advances in server technology. Hardware com‐
panies like DEC, HP, and IBM (prodded by startups like Pyramid,
Sequent, and SGI) designed servers that were finally powerful enough
to execute queries against a terabyte of data.

A small startup, Teradata, developed one of the first database kernels
to handle queries against a TB of data. Established database companies
like Informix, Oracle, and Sybase were soon chasing Teradata. Vendors
who had spent years building kernels that were optimized for trans‐
action processing needed to re-tool their kernels in order to handle
queries that could process a thousand times as much data.

Some companies developed purpose-built kernels to handle a specific
class of workloads (which was the point in time where big data really
started). This early, difficult, clumsy, and expensive market has been
called a lot of things over the years—decision support, OLAP, data
warehouse, business intelligence (BI)—but even in the 1990s, it was
important enough that the benchmark standards committee, TPC,
defined a benchmark to help users qualify industry solutions.

To the extent that benchmarks ever help customers make purchasing
decisions, these artificial workloads defined a generation of technol‐
ogy and capabilities. As successful as Teradata was at setting the bar
for warehouse performance, it turned out to be a mom-and-pop,
purpose-built business just like scientific supercomputing. After al‐
most twenty years, Teradata is still a David against the Goliaths of IBM,
Oracle, and EMC.

In commercial computing, the highly un-sexy applications for book‐
keeping and widget tracking are where the money has always been.
Yet, even the Goliaths will have difficulty dominating big data and high
performance commercial computing for all the reasons scientific
computing was never much of a growth business: purpose-built com‐
plex engineering, boutique revenues, and very pregnant sales cycles.
Big data is moving so fast relative to the clumsy old industry that

38 | Chapter 4: The Reservoir of Data



standards bodies will find it difficult to define a general-purpose
benchmark for a purpose-built world.

As soon as it was possible to extract, transform, and load (ETL) ware‐
house quantities of data, enterprises started drowning in it. Prior to
the 1990s, data sources were abundant, but the high cost of storage
still meant stashing much of it on tape. Tape technology has more lives
than cats. The simple reason tape is still viable today is due to its eco‐
nomics. Even as disk storage approaches $1/TB, tape remains a couple
of orders of magnitude cheaper. Big data starts to live up to its name
not when enterprises have 10 petabytes in their cluster, but when they
can afford to load 500 exabytes. In that world, tape will still be alive
and well because the sensors from which the 500 exabytes originated
will be producing 500 zettabytes/year.

Spinning Rust
Hennessey and Paterson have shown that processing technology has
more or less tracked Moore’s Law, but memory and storage have not.
In the early 2000s, the cost of memory started to fall in line with
Moore’s Law since memory is a semiconductor, but storage technology
remained mechanical. The technology of disk drives today is not far
removed from disk drives made in the 1980s. The landmark IBM
Winchester was made from spinning platters of rust (oxidized parti‐
cles) and flying magnetic heads, which is still true today for the drives
found in a Hadoop cluster.

The recent emergence of flash as storage technology and Hadoop as a
low-cost alternative to arrays of expensive disks will combine to pro‐
duce its own form of disruption to that industry. A flash-based Hadoop
cluster, for the first time, will be able to operate on a working set of
problems at memory speeds. However, the economics of storing hun‐
dreds of petabytes will insure both forms of spinning and spooling
rust will be required by big data.

A Spectrum of Perishability
In the old silo world, enterprise data was mission critical, extremely
valuable, and should never be lost, corrupted, or compromised. Most
enterprise vendors have designed their products to be extremely per‐
sistent and in some cases, as with databases, coherently persistent. To‐
day in the land that is flooded with too much data, not only is it too

Spinning Rust | 39



expensive to cherish every bit, it is often not necessary. For the first
time, enterprises can afford to crunch on an absurd amount of data
for analysis, discovery, and insight. The price of admission is being
able to stage 25 PB long enough for the crunch to occur. In many cases,
even at $1/TB, keeping 25 PB around after the crunch will be imprac‐
tical and some data must be tossed. When petabytes become exabytes,
exabytes become zettabytes, and zettabytes become yottabytes, then
keeping tons of data after it has been crunched will not be an option.

Data lives on a spectrum of perishability that spans from seconds to
decades. Data can be so transient that if analysis does not complete
within an hour, the shelf life of the insight expires and the data must
be deleted to make room for the next hour’s data. Perishability puts
the emphasis on insight not retention. Historically, most enterprises
have chosen to keep data for as long as possible and as cheaply as
possible, but for big data, ideas and policies regarding the duration
and cost of retention must be revaluated. Everything lives on a spec‐
trum of perishability; data, technology, and the business itself. Inno‐
vation drives the rapid expiration of all three.

Software vendors built warehouse products to run on dedicated hard‐
ware out of necessity to ensure their complex product would even
work. If the vendor was IBM, these products typically ran on IBM
hardware. If the vendor was Oracle, these products typically ran on
hardware from one of Oracle’s hardware partners such as Dell, HP or
even IBM. Prescribing and packaging the hardware platform in‐
creased the odds of a successful deployment.

This trend in engineered systems looks like a platform-aware evolu‐
tion, but it turns out to be more about vendor franchise management
and less about the customer experience. Plus it increases the likelihood
of stranding customers’ data. Stranded, captive data is the result of
vendors optimizing their products for margins and not markets. This
approach to product development also tends to stifle innovation. If a
franchise remains strong and can be enforced so captives can’t escape,
vendors can still make a decent living. But no such franchise exists
today in big data, even among established players like IBM, Oracle and
EMC.

Enterprise customers continue to purchase new warehouse products
that promise to solve all their data problems only to have to move—
yet again—all the data from the last failed platform to the new and
improved one. Improvements in cost and scale mean that the latest

40 | Chapter 4: The Reservoir of Data



and most capable system ends up with the most data. All of the old
platforms did such a good job of snaring data that it became technically
or politically difficult (usually both) to migrate to a new system. Many
enterprises have an large collection of stranded data sources–not just
in last year’s database on expensive storage arrays–but vast repositories
of analog data (such as X-rays) that haven’t yet made it onto that cock‐
roach of all storage mediums, tape.

Enclosed Water Towers
As the tsunami of data inundates enterprises, some may feel that their
existing water towers of data are clean and safe from contamination.
Despite those tanks being well built and expensive, relative to the mil‐
lions of gallons of water that comes ashore with just the first wave, they
hold little and reveal less. The volume of data already coming into
enterprises is enough to fill a Los Angeles County service reservoir in
minutes. Because enterprises have spent the last twenty years con‐
structing larger and larger water tanks of stranded, captive data, they
need to start building reservoirs to safely capture the raw data (in‐
cluding all the debris) so that it can be processed and treated.

Enclosed Water Towers | 41



An Oracle database running on EMC hardware is a very capable water
tank, but it remains a closed source for only a few analytic residents.
For enterprises to reap the benefits that will come from being able to
analyze all their aggregated data, both old and new, they must stop
stranding data in tanks and start constructing a more open and com‐
mon reservoir for data that uncouples accessibility from analysis.
These new repositories will function like the fresh water reservoirs
that serve a city the size of Los Angeles.

In California, the majority of rain falls between November and March,
but water demand is constant. Reservoirs are an efficient way to store
hundreds of thousands of acre-feet, so water districts use their plumb‐
ing and pumps to deliver water to downstream customers. Like water
in a tsunami wall or behind an earthen damn that has just failed, water
can be an extremely destructive force of nature. Too little water and
mammals like you and I end up at the wrong end of our own perish‐
ability scale. At rest, too much water is not usually considered a hazard,
but water under the influence of gravity or seismicity can get out of
control and cause limitless destruction.

Data, like water, must be treated with respect. Mammals need fresh
and clean drinking water; enterprises need safe and clean data. Since
a big data reservoir will need to efficiently accommodate hundreds of
exabytes, it will be worth the bother of building accessible and robust
reservoirs. And it will be critical to the sustainability of the enterprise.

The Big Data Water District
The Tennessee Valley Authority was one of the largest public works
projects in the history of the United States. To many enterprises,
building a big data reservoir will feel like a project on the scale of the
TVA. A big data reservoir must be able to hold all the water you might
ever need to collect, yet still be accessible, robust and affordable to
both construct in the present and maintain in the future.

The file system contained within Hadoop is one of the first commercial
file systems to meet all these criteria. Hadoop consists of two major
components: the file system (HDFS) and a parallel job scheduler.
When HDFS creates a file, it spreads the file over all available nodes
and makes enough copies so that when a job runs on the cluster, there
are enough spare copies of the file to insure as much parallelism and
protection as possible.

42 | Chapter 4: The Reservoir of Data



File systems have always been closely associated with databases and
operating systems. A file system isn’t usually thought of as a distinct
piece of technology, but more as a tightly integrated piece or natural
extension to the database or operating system kernel. For example,
Oracle’s database kernel always had aspects of a file system built into
it: tables, segments and extents all perform functions that are associ‐
ated with a traditional file system.

Veritas was one of the first companies to demonstrate that a file system
was valuable enough to stand on its own as a product and didn’t have
to be embedded within either the OS or database. Veritas is no longer
around, but it wasn’t because the functional autonomy of a file system
was a bad idea. Execution, competitors’ egos, and sheer luck influence
the destiny of most commercial technologies.

The HDFS Reservoir
The Hadoop Distributed File System is not a complex, feature-rich,
kitchen sink file system, but it does two things very well: it’s economical
and functional at enormous scale. Affordable. At. Scale. Maybe that’s
all it should be. A big data reservoir should make it possible for tra‐
ditional database products to directly access HDFS and still provide a
canal for enterprises to channel their old data sources into the new
reservoir.

Big data reservoirs must allow old and new data to coexist and inter‐
mingle. For example, DB2 currently supports table spaces on tradi‐
tional OS file systems, but when it supports HDFS directly, it could
provide customers with a built-in channel from the past to the future.
HDFS contains a feature called federation that, over time, could be
used to create a reservoir of reservoirs, which will make it possible to
create planetary file systems that can act locally but think globally.

The HDFS Reservoir | 43



Third Eye Blind
The time and engineering effort required to navigate old data sources
through the canal will frequently exceed the effort to run a Hadoop
job, which itself is no small task. Hadoop is a powerful programming
platform, but it is not an application platform. Some customers are
surprised to find their Hadoop cluster comes from the factory empty.
This is the DIY part of it: even if you buy a dedicated hardware appli‐
ance for Hadoop, it doesn’t come with the applications that your busi‐
ness requires to analyze your data.

Doing it yourself involves having a competent team of engineers who
are capable of both loading the data and writing the applications to
process that data. These developers must construct a processing work‐
flow that is responsible for generating the insight. The cast of devel‐
opers required includes data scientists, workflow engineers (data
wranglers) and cluster engineers who keep the supercomputers fed
and clothed.

44 | Chapter 4: The Reservoir of Data



Clusters are loaded two ways: from all the existing stranded sources
and with greenfield sources (such as a gaggle of web server logs).
Moving old data from the existing stranded sources is often an un‐
derfunded project of astonishing complexity. Like any major canal
project, the construction of a data canal between legacy sources and
the new reservoir will be a complex platform project in its own right.

Migrating large amounts of data is particularly annoying because old
systems need to continue to run unimpeded during migration, so ac‐
cessing those systems is a delicate problem. This third migration plat‐
form is hidden from view and must architecturally serve two masters
while moving data quickly and carefully. It can be so difficult that even
moving a modest amount of data (for example, 30 TB of patient re‐
cords from an old DB2 mainframe into a Hadoop cluster) will feel like
moving passengers off a bus that explodes if it slows down.

Spectrum of Analytic Visibility
Chocolate or vanilla, analog versus digital—it’s seems as if big data
only comes in two flavors, structured and unstructured, but structure
lives on a spectrum of analytic visibility into the data. Video data is
frequently cited as an unstructured data source, but is seriously struc‐
tured. An MPEG transport stream contains all sorts of bits to help a
set-top box find the correct audio and video streams. Within those
streams, there is enough “structure” for a set-top box to disentangle
the audio and video streams. The degree of structure required depends
on what is to be discovered. A set-top box must be aware of many
layers of structure within the bit-stream, whereas an analyst running
a big data job to search for criminals in CCTV footage is only interested
in the odd macro block and doesn’t care if the sound locks to picture.

NoSQL databases have become popular for their affordability and ease
of use while operating at Internet scale. The organization of data found
in the family of noSQL databases is often pejoratively described as
unstructured, but a better way to describe it is simply structured.
Viewed from deep within a complex and expensive relational database,
this simple structure might seem completely unstructured, but the
amount of structure required depends entirely on where and what is
being looked for and how fast it must be found.

As far back as the 1960s, there was a need to access information in a
way that was simple and fast, yet not necessarily sequentially. This
method was called the index sequential access method. Access method

Spectrum of Analytic Visibility | 45



is a term still used today inside database engines to describe how data
is read from tables. An ISAM file had a single index key that could be
used to randomly access single records, instead of using a ponderous
sequential scan. A user supplied a key and values that were associated
with that key were returned to the user. An ISAM-like, key-value table
can also be constructed in an enterprise-grade relational database as
a simple table, but it is going to be an expensive key-value table and
this is what limits its size, not the inability for the enterprise engine’s
ability to construct it.

The easiest way to access hundreds of terabytes of data requires access
methods to be simple (and by implication, scalable). Simple and scal‐
able requires a relatively simple method like key-value pair. The new
generation of fast and cheap noSQL databases now being used for big
data applications are also known as key-value pair databases. The
structural antithesis of noSQL is the class of complex and expensive
uberSQL relational databases.

Big data is about the workflow of cleaning, filtering and analyzing
patterns that lead to discovery. Overly structured data, by definition,
has been editorialized, refined, and transformed. With the ability to
aggregate so much raw data and all the intermediate steps (including
the mistakes) and the final “clean” data, the big data reservoir exposes
the workflow. The more this workflow (as ugly as it might be) is ex‐
posed to scientists, business owners and data wranglers, the potential
is greater to discover things they didn’t know they should have been
looking for in the first place. This puts the epiphany into big data.

Historically, the process was called extract, transform and load (ETL).
But the economics and scale of Hadoop change the order to ELT since
the raw data is loaded before the scheduling power of Map/Reduce can
be brought to bear on multiple transform pipelines. Hadoop users have
already discovered that the ability to clean up processing pipelines
alone justifies the acquisition of a Hadoop cluster. In these cases, anal‐
ysis must still be conducted in old legacy database silos and re-tooling
the analysis pipelines tends to be more difficult. Hadoop also re-
defines ETL to ELTP where the P stands for Park. The raw data, pro‐
cessed data, and archived data can now all park together in a single,
affordable reservoir.

46 | Chapter 4: The Reservoir of Data



The Cost of Flexibility
Initial attempts at data discovery started on relational databases when
enough data had accumulated to make discovery worthwhile. Most
relational databases were not designed to handle acre-feet of data–
most were designed to be proficient at online transaction processing
(OLTP). Eventually, data warehousing capabilities were grafted onto
these database engines, but the grafting was difficult and early versions
were unsuccessful. These early attempts at analyzing big data were
impeded by kernels that had been optimized for hundreds of tables
with hundreds of columns, not a few huge tables with just a few col‐
umns and billions of rows.

Eventually, traditional database vendors developed effective methods
for handling queries on huge tables, but this resulted in more structure
than necessary. A relational data model (or schema) is a collection of
tables with various columns. This model provided far more flexibility
than the approach it replaced (IBM’s IMS hierarchical data model from
the 1970s), yet relational technology still required users to know, ahead
of time, which columns went into what tables.

Common relational database design encouraged a practice called nor‐
malization, which maximized flexibility in case users needed to add
new tables or new columns to existing tables. Normalization also
minimized the duplication of data between tables because disk space
was expensive. This flexibility is why the relational database quickly
replaced hierarchical database technology that had been the de facto
database up until that point.

SQL queries frequently require many tables to be joined together. The
piece of magic inside the database kernel that makes this possible is
called the SQL query parser/optimizer or cost-based optimizer (CBO).
SQL optimizers use algorithms to determine the cost of retrieving the
data in order to select the most cost-effective retrieval strategy. Joining
all these tables together to solve the query quickly is a torturous exer‐
cise in pretzel logic. A CBO engineered for highly normalized OLTP
schemas is designed to join complex tables with thousands of rows. It
was not designed for big data schemas that have simpler tables with
billions of rows. OLTP-based CBOs optimize space for time, whereas
big data CBOs must optimize time for space.

Big data workloads consist of a broad spectrum of purpose-built
workloads. This has spawned a myriad of new database products that

The Cost of Flexibility | 47



work at scale but are purpose-built because it is not possible to build
a single, general-purpose database kernel or CBO to handle the entire
spectrum. In their attempts to address big data with general-purpose
warehouse products, customers often end up purchasing “one of each,”
only to have each attempt result in yet another stranded water tank of
data.

By the early 2000s, vast quantities of enterprise data were stranded on
software and hardware platforms that were never designed for big da‐
ta. Even the software and hardware components that were capable of
big data (and had re-tooled their CBO to handle billion-row tables)
were so expensive that big data would be better described as Big Bucks.
Large pools of data that need discovery, or need to be combined with
pools from other uberSQL repositories have been trapped in slow,
complex and expensive databases. Building diversion canals between
these stranded water towers and the big data reservoir will be difficult,
but once fully charged, a reservoir that finally aggregates the data in a
single, scalable repository for a single analytic view will be the most
important legacy of big data.

48 | Chapter 4: The Reservoir of Data



CHAPTER 5

Cloudy with a Chance of Meatballs:
When Clouds Meet Big Data

The Big Tease
As scientific and commercial supercomputing collide with public and
private clouds, the ability to design and operate data centers full of
computers is poorly understood by enterprises not used to handling
three hundred million anythings. The promise of a fully elastic and
cost-effective computing plant is quite seductive, but Yahoo!, Google,
and Facebook solved these problems on their own terms. More con‐
ventional enterprises that are now facing either Internet-scale com‐
puting or a desire to improve the efficiency of their enterprise-scale
physical plant will need to identify their own requirements for cloud
computing and big data.

Conventional clouds are a form of platform engineering designed to
meet very specific and mostly operational requirements. Many clouds
are designed by residents of silos that only value the requirements of
their own silo. Clouds, like any platform, can be designed to meet a
variety of requirements beyond the purely operational. Everyone
wants an elastic platform (or cloud), but as discussed in chapter two,
designing platforms at Internet scale always comes with trade-offs and
elasticity does not come free or easy. Big data clouds must meet strin‐
gent performance and scalability expectations, which require a very
different form of cloud.

The idea of clouds “meeting” big data or big data “living in” clouds
isn’t just marketing hype. Because big data followed so closely on the

49



trend of cloud computing, both customers and vendors still struggle
to understand the differences from their enterprise-centric perspec‐
tives. On the surface there are physical similarities in the two tech‐
nologies—racks of cloud servers and racks of Hadoop servers are con‐
structed from the same physical components. But Hadoop transforms
those servers into a single 1000-node supercomputer, whereas con‐
ventional clouds host thousands of private mailboxes.

Conventional clouds consist of applications such as mailboxes and
Windows desktops and web servers because those applications no
longer saturate commodity servers. Cloud technology made it possible
to stack enough mailboxes onto a commodity server so that it could
achieve operational efficiency. However, Hadoop easily saturates every
piece of hardware it can get its hands on, so Hadoop is a bad fit for a
conventional cloud that is used to containing many idle applications.
Although everyone who already has existing conventional clouds
seems to think big data should just work in them effortlessly, it’s never
that easy. Hadoop clouds must be designed to support supercomput‐
ers, not idle mailboxes.

A closer look reveals important differences between conventional
clouds and big data; most significantly, they achieve scalability in very
different ways, for very different reasons. Beyond the mechanisms of
scalability that each exploits, the desire to put big data into clouds so
it all operates as one fully elastic supercomputing platform overlooks
the added complexity that results from this convergence. Complexity
impedes scalability.

Scalability 101
Stated simply, the basic concept of scalability defines how well a plat‐
form handles a flood of new customers, more friends or miles of CCTV
footage. Achieving scalability requires a deep understanding about
what the platform is attempting to accomplish and how it does that.
When a river of new users or data reaches flood stage, a platform scales
if it can continue to handle the increased load quickly and cost-
effectively.

Although the concept of scalability is easy to understand, the strategies
and mechanisms used to achieve scalability for a given set of workloads
is complex and controversial, often involving philosophical arguments
about how to share things—data, resources, time, money—you know,
the usual stuff that humans don’t share well. How systems and pro‐

50 | Chapter 5: Cloudy with a Chance of Meatballs: When Clouds Meet Big Data



cesses scale is isn’t merely a propeller-head computer science topic;
scalability applies to barbershops, fast food restaurants and vast swaths
of the global economy. Any business that wants to grow understands
why platforms need to scale; understanding how to make them scale
is the nasty bit.

The most common notion of scalability comes from outside the data
center, in economies of scale. Building cars, burgers or googleplexes
requires a means of production that can cost-effectively meet the
growth in demand. In the 20th century, the US economy had an af‐
fluent population of consumers who comprised a market so large that
if a company’s product developed a national following, it had to be
produced at scale.

This tradition of scalable production traces back past Henry Ford, past
the War of Independence and into the ancestral home of the industrial
revolution in Europe. During a minor tiff over a collection of colonies,
the British Army felt the need to exercise some moral suasion. Their
field rifles were serious pieces of engineering–nearly works of art. They
were very high quality, both expensive to build and difficult to main‐
tain in the field. The US army didn’t have the engineering or financial
resources to build rifles anywhere near that quality, but they knew how
to build things simply, cheaply and with sufficient quality–and these
are the tenets of scalable manufacturing.

The only catch to simple, quick and cheap is quality–not enough qual‐
ity and the rifles aren’t reliable (will it fire after being dropped in a
ditch?) and too much quality means higher costs resulting in fewer
weapons. The British had museum-quality rifles, but if that did not
translate into more dead Americans, the quality was wasted and there‐
fore not properly optimized. This is the first lesson of doing things at
scale: too much quality impedes scale and too little results in a lousy
body count.

Scalability isn’t just about doing things faster; it’s about enabling the
growth of a business and being able to juggle the chainsaws of margins,
quality and cost. Pursuit of scalability comes with its own perverse
form of disruptive possibilities. Companies that create a great product
or service can only build a franchise if things scale, but as their business
grows, they often switch to designing for margins instead of market
share. This is a great way to drive profit growth until the franchise is
threatened.

Scalability 101 | 51



Choosing margins over markets is a reasonable strategy in tertiary
sectors that are mature and not subject to continuous disruption.
However, computing technology will remain immature, innovative
and disruptive for some time. It is hard to imagine IT becoming as
mature as bridge building, but the Golden Gate bridge was built by the
lunatics of their time. Companies that move too far down the margins
path can rarely switch back to a market-driven path and eventually
collapse under their own organizational weight. The collapse of a
company is never fun for those involved, but like the collapse of old
stars, the resultant supernova ejects talent out into the market to make
possible the next wave of innovative businesses.

Motherboards and Apple Pie
Big data clusters achieve scalability based on pipelining and parallel‐
ism, the same assembly line principles found in fast-food kitchens.
The McDonald brothers applied the assembly line to burgers to both
speed up production and reduce the cost of a single burger. Their as‐
sembly line consists of several burgers in various states of parallel as‐
sembly. In the computer world, this is called pipelining. Pipelining also
helps with efficiency by breaking the task of making burgers into a
series of simpler steps. Simple steps require less skill; incremental staff
could be paid less than British rifle makers (who would, of course,
construct a perfect burger). More burgers plus faster plus less cost per
burger equals scalability.

In CPU design, breaking down the circuitry pipeline that executes
instructions allows that pipeline to run at higher speeds. Whether in
a kitchen or a CPU, simple steps make it possible to either reduce the
effort required (price) or increase the production (performance) of
burgers or instructions. Scalable systems require price and perfor‐
mance to be optimized (not just price and not just performance) all
the while trying to not let the bacteria seep into the meat left on the
counter. Well, that’s the theory.

Once a kitchen is set up to efficiently make a series of burgers, then
adding another burger assembly line with another grill and more staff
to operate it will double the output of the kitchen. It is important to
get the first assembly line as efficient as possible when it’s the example
for thousands of new restaurants. Back inside the CPU, it made eco‐
nomic sense for designers to build multiple floating-point functional
units because most of the scientific code that was being run by their

52 | Chapter 5: Cloudy with a Chance of Meatballs: When Clouds Meet Big Data



customers was saturating the CPU with these instructions. Adding
another floating point “grill” made the program run twice as fast and
customers gladly paid for it.

Scientific and commercial supercomputing clusters are mostly about
parallelism with a little bit of pipelining on the side. These clusters
consist of hundreds of “grills” all cooking the data in parallel and this
produces extraordinary scalability. Each cluster node performs exactly
the same task (which is more complicated than applying mustard and
ketchup), but the cluster contains hundreds of identically configured
computers all running exactly the same job on their private slice of
data.

Being and Nothingness
Big data cluster software like Hadoop breaks up the analysis of a single,
massive dataset into hundreds of identical steps (pipelining) and then
runs hundreds of copies at once (parallelism). Unlike what happens
in a conventional cloud, Hadoop is not trying to cook hundreds of
burgers; it’s trying to cook one massive burger. The ability to mince
the problem and then charbroil it all together is where the genius lies
in commodity supercomputing.

System designers use the term “shared-nothing” to indicate the pro‐
cess of hundreds of nodes working away on the problem while trying
not to bother other nodes. Shared-nothing nodes try hard not to share
anything. In practice, they do a little sharing, but only enough to
propagate the illusion of a single, monolithic supercomputer. On the
other hand, shared-everything data architectures emphasize the value
gained by having all nodes see a common set of data. Software and
hardware mechanisms are required to insure the single view remains
correct or coherent but these mechanisms reduce isolation. The need
to insure a single, shared view is traded for scalability. There is a class
of workloads that does benefit from a single shared view, but in the
world of big data, massive scalability is the last thing to be traded away,
so shared nothing it is.

When doubled in size, a shared-nothing cluster that scales perfectly
operates twice as fast or the job completes in half the time. A shared-
nothing cluster never scales perfectly, but getting a cluster to 80% faster
when doubled is still considered good scaling. Several platform and
workload engineering optimization strategies could be employed to
increase the efficiency of a cluster from 80% to 90%. A cluster that

Being and Nothingness | 53



scales better remains smaller which also improves its operational ef‐
ficiency as well. Hadoop has already been demonstrated to scale to
very high node counts (thousands of nodes). But since a 500-node
cluster generates more throughput than a 450-node cluster, whether
it is 8% faster instead of 11% isn’t as important as Hadoop’s ability to
scale beyond thousands of nodes. Very few data processing platforms
can achieve that, let alone do it affordably.

Parity Is for Farmers
Hadoop has done for commercial supercomputing what had been al‐
ready accomplished in scientific supercomputing in the 1990s. Mon‐
olithic HPC supercomputers have been around since the 1960s when
Seymour Cray designed the Control Data 6600, which is considered
one of the first successful supercomputers. He must have worked as a
short-order cook in a previous lifetime since his design innovations
resemble those from a fast food kitchen. What made the 6600 fast was
the pipelining of tasks within the CPU. The steps were broken down
to make them easier and cheaper to design and build. After Cray had
finished pipelining the CPU circuits, he turned to parallelism by
adding extra burger grills designed specifically to increase the number
of mathematical, or floating-point results that could be calculated in
a second.

After Cray left CDC, he took his design one step further in the Cray-1
by noticing that solving hundreds of equations generated thousands
of identical instructions (add 2 floating numbers, divide by a third).
The only difference between all these instructions was the values (or
operands) used for each instruction. He decided to build a vector
functional unit that would perform sixty-four sets of calculations at
once–burger’s up!

54 | Chapter 5: Cloudy with a Chance of Meatballs: When Clouds Meet Big Data



Pipelining and parallelism have been hallmarks of HPC systems like
the Cray, but very few corporations could afford a Cray or an IBM
mainframe. Decades later, microprocessors became both affordable
and capable enough that if you could figure out how to lash a hundred
of them together, you might have a shot at creating a poor man’s Cray.
In the late 1980s, software technology was developed to break up large
monolithic jobs designed to run on a Cray into a hundred smaller jobs.
It wasn’t long before some scheduling software skulking around a uni‐
versity campus in the dead of night was infesting a network of idle
workstations. If a single workstation was about 1/50th the speed of a
Cray, then you only needed 50 workstations to break even. Two hun‐
dred workstations were four times faster than the Cray and the price/
performance was seriously good, especially since another department
probably paid for those workstations.

Starting with early Beowulf clusters in the 1990s, HPC clusters were
being constructed from piles of identically configured commodity
servers (i.e., pipeline simplicity). Today in 2013, a 1000-node HPC
cluster constructed from nodes that have 64 CPU cores and zillions of
memory controllers can take on problems that could only be dreamed
about in the 1990s.

Google in Reverse
Hadoop software applies the HPC cluster trick to a class of Internet-
scale computing problems that are considered non-scientific. Hadoop
is an evolution of HPC clusters for a class of non-scientific workloads
that were plaguing companies with Internet-scale, non-scientific da‐
tasets. Financial services and healthcare companies also had problems
as large as the HPC crowd, but until Hadoop came along, the only way
to analyze their big data was with relational databases.

Hadoop evolved directly from commodity scientific supercomputing
clusters developed in the 1990s. Hadoop consists of a parallel execu‐
tion framework called Map/Reduce and Hadoop Distributed File Sys‐
tem (HDFS). The file system and scheduling capabilities in Hadoop
were primarily designed to operate on, and be tolerant of, unreliable
commodity components. A Hadoop cluster could be built on eight
laptops pulled from a dumpster and it would work; not exactly at en‐
terprise grade, but it would work. Yahoo! couldn’t initially afford to
build 1000-node clusters with anything other than the cheapest sub-
components, which is the first rule of assembly lines anyway–always

Google in Reverse | 55



optimize the cost and effort of the steps in the pipeline. Hadoop was
designed to operate on terabytes of data spread over thousands of flaky
nodes with thousands of flaky drives.

Hadoop makes it possible to build large commercial supercomputing
platforms that scale to thousands of nodes and, for the first time, scale
affordably. A Hadoop cluster is a couple of orders of magnitude (hun‐
dreds of times) cheaper than platforms built on relational technology
and, in most cases, the price/performance is several orders of magni‐
tude (thousands of times) better. What happened to the big-iron, ex‐
pensive HPC business in the early 1990s will now happen to the ex‐
isting analytics and data warehouse business. The scale and price/
performance of Hadoop is significantly disrupting both the economics
and nature of how business analytics is conducted.

Isolated Thunderstorms
Everybody understands the value gained from a high-resolution view
of consumers’ shopping habits or the possibility of predicting where
crimes are likely to take place. This value is realized by analyzing mas‐
sive piles of data. Hadoop must find a needle, customer or criminal in
a large haystack and do it quickly. Hadoop breaks up one huge haystack
into hundreds of small piles of hay. The act of isolating the haystacks
into smaller piles creates a scalable, shared-nothing environment so
that all the hundreds of piles are searched simultaneously.

Superficially, Hadoop seems to be related to cloud computing because
the first cloud implementations came from the same companies at‐
tempting Internet-scale computing. The isolation benefits that make
any shared-nothing platform achieve scalability also make clouds
scale. However, clouds and Hadoop achieve isolation through very
different mechanisms. The Hadoop isolation mechanism breaks up a
single pile of hay into hundreds of piles so each one of those nodes
works on its own private pile. Hadoop creates synthesized isolation.
But a cloud running a mail application that supports hundreds of mil‐
lions of users already started out with hundreds of millions of mail‐
boxes or little piles of hay. Conventional clouds have natural isolation.
The isolation mechanism results from the initial requirement that each
email user is isolated from the others for privacy. Although Hadoop
infrastructure looks very similar to the servers running all those mail‐
boxes, Hadoop clusters remain one single, monolithic supercomputer
disguised as a collection of cheap, commodity servers.

56 | Chapter 5: Cloudy with a Chance of Meatballs: When Clouds Meet Big Data



The Myth of Private Clouds
Cloud computing evolved from grid computing, which evolved from
client-server computing, and so on, back to the IBM Selectric. Oper‐
ating private clouds remains undiscovered country for most enterpri‐
ses. Grids at this scale are not simply plumbing; they are serious ad‐
ventures in modern engineering. Enterprises mostly use clouds to
consolidate their sprawling IT infrastructure and to reduce costs.
Many large enterprises in the 1990s had hundreds or thousands of PCs
that needed care and feeding, which mostly meant installing, patching,
and making backups. As the work force became more mobile and
laptops replaced desktops, employees’ computers and employers’ sen‐
sitive data became more difficult to protect. Early private clouds were
set up to move everyone’s “My Documents” folder back into their data
center so it could be better secured, backed up and restored.

When personal computers began to have more computing power than
the servers running the back-office accounting systems, most of the
spare power went unused by those users who spent their days using
MS Office. A single modern workstation in the early 2000s could sup‐
port eight or ten users. This “bare iron” workstation could be carved
up into ten virtual PCs using a hypervisor like VMware’s ESX or Red
Hat’s KVM. Each user got about the same experience as having their
own laptop gave them, but the company reduced costs.

Conventional clouds consist of thousands of virtual servers and as long
as nothing else is on your server beating the daylights out of it, you’re

The Myth of Private Clouds | 57



good to go. The problem with running Hadoop on clouds of virtual‐
ized servers is that it beats the crap out of bare-iron servers for a living.
Hadoop achieves impressive scalability with shared-nothing isolation
techniques, so Hadoop clusters hate to share hardware with anything
else. Share no data and share no hardware—Hadoop is shared-
nothing.

While saving money is a worthwhile pursuit, conventional cloud ar‐
chitecture is still a complicated exercise in scalable platform engineer‐
ing. Many private conventional clouds will not be able to support Ha‐
doop because they rely on each individual application to provide its
own isolation. Hadoop in a cloud means large, pseudo-monolithic
supercomputer clusters lumbering around. Hadoop is not elastic like
millions of mailboxes can be. It is a 1000-node supercomputer cluster
that thinks (or maybe wishes) it is still a Cray. Conventional clouds
designed for mailboxes can be elastic but will not elastically accom‐
modate supercomputing clusters that, as a single unit of service, span
25 racks.

It’s not that Hadoop can’t run on conventional clouds—it can and will
run on a cloud built from dumpster laptops, but your SLA mileage will
vary a lot. Performance and scalability will be severely compromised
by underpowered nodes connected to underpowered external arrays
or any other users running guests on the physical servers that contain
Hadoop data nodes. A single Hadoop node can easily consume phys‐
ical servers, even those endowed with 1300+ MB/sec of disk I/O
throughput.

A Tiny Data 8-node bare-iron cluster can produce over 10GB/sec.
Most clouds share I/O and network resources based on assumptions
that guests will never be as demanding as Hadoop data nodes are.
Running Hadoop in a conventional cloud will melt down the array
because of the way that most SANs are configured and connected to
clouds in enterprises. Existing clouds that were designed, built and
optimized for web servers, email, app servers and Windows desktops
simply will not be able to support Hadoop clusters.

The network fabric of a Hadoop cluster is the veins and arteries of
HDFS and must be designed for scalable throughput—not attachment
and manageability, which is the default topology for conventional
clouds and most enterprise networks. If Hadoop is imposed on a con‐
ventional cloud, it needs to be a cloud designed to run virtual super‐
computers in the first place, not a conventional cloud that has been

58 | Chapter 5: Cloudy with a Chance of Meatballs: When Clouds Meet Big Data



remodeled, repurposed and reshaped. Big data clouds have to be de‐
signed for big data.

My Other Data Center Is an RV Park
Companies attempting to build clouds or big data platforms that op‐
erate at Internet-scale are discovering they need to rethink everything
they thought they knew about how to design, build and run data cen‐
ters. The Internet-scale pioneering companies initially purchased
servers from vendors like IBM, HP and Dell, but quickly realized the
value, and therefore pricing, of those servers was driven by features
they didn’t need (like graphics chips and RAID cards).

The same features that might be useful for regular customers became
completely irrelevant to companies that were going to sling 85,000
servers without ever running a stitch of Windows. Hardware vendors
were building general-purpose servers so that their products would
appeal to the greatest number of customers. This is a reasonable con‐
vention in product design; but like scientific computing users, com‐
mercial computing users do not require general-purpose servers to
construct purpose-built supercomputing platforms.

At Internet-scale, absolutely everything must be optimized, including
everything in the computing plant. After learning how to buy or build
stripped-down servers, these companies quickly moved on to opti‐
mizing the entire notion of a data center, which is just as critical as the
server and software to the platform. It was inevitable that the physical
plant also had to be deconstructed and optimized.

Today’s data centers can be found in a stack of intermodal containers
like those on an ocean freighter. Because a container full of computers
only needs power, water for cooling and a network drop, data centers
also can be located on empty lots or abandoned RV parks.

Converge Conventionally
Cloud computing evolved from the need to handle millions of free
email users cheaply. Big data evolved from a need to solve an emerging
set of supercomputing problems. Grids or clouds or whatever they will
be called in the future are simply platforms of high efficiency and scale.

Although clouds are primarily about the operational aspects of a com‐
puting plant, learning how to operate a supercomputer is not like op‐

My Other Data Center Is an RV Park | 59



erating any traditional IT platform. Managing platforms at this scale
is extremely disruptive to the enterprise’s notion of what it means to
operate computers. And over time, the care of feeding of thousands
of supercomputers will eventually lead us to change the way computers
must operate.

60 | Chapter 5: Cloudy with a Chance of Meatballs: When Clouds Meet Big Data



CHAPTER 6

Haystacks and Headgames

The Demise of Counting
So far, I have been discussing how big data differs from previous
methods of computing–how it provides benefits and creates disrup‐
tions. Even at this early stage, it is safe to predict big data will become
a multi-billion dollar analytics and BI business and possibly subsume
the entire existing commercial ecosystem. During that process, it will
have disrupted the economics, behavior and understanding of every‐
thing it analyzes and everyone who touches it–from those who use it
to model the biochemistry of personality disorders to agencies that
know the color of your underwear.

Big data is going to lay enough groundwork that it will initiate another
set of much larger changes to the economics and science of computing.
(But the future will always contain elements from the past, so main‐
frames, tape and disks will still be with us for a while.) This chapter is
going to take a trip into the future and imagine what the post big data
world might look like. The future will require us to process zettabytes
and yottabytes of data on million-node clusters. In this world, indi‐
vidual haystacks will be thousands of times the size of the largest Ha‐
doop clusters that will be built in the next decade. We are going to
discover what the end of computing might look like, or more precisely,
the end of counting.

The first electronic computers were calculators on steroids, but still
just calculators. When you had something to calculate, you program‐
med the machinery, fed it some data, and it did the counting. Early
computers that solved mathematical equations for missile trajectory

61



still had to solve these equations using simple math. Solving an equa‐
tion the way a theoretical physicist might is how human brains solve
equations, but computers don’t work like brains. There have been at‐
tempts at building computers that mimic the way brains solve equa‐
tions, but engineering constraints make it more practical to build a
hyperactive calculator that solves equations through brute force and
ignorance.

Modern processors now operate with such brute force (i.e., clock
speed) and the ignorance of simple electronics that can add, subtract,
multiply and divide with every clock tick. On a good day this could be
12 billion every second. If processors that have 16 cores could be fed
data fast enough (hint: they can’t), this would be 192 billion calcula‐
tions/second. The software that made the algebraic method possible
still runs on those crazy counting machines. Lucky for us, we can still
get a lot accomplished with brute force and ignorance.

Scientific computing clusters have to solve problems so immense that
they are constructed from thousands of multi-core processors. The
NOAA weather forecasting supercomputer is a good example, but de‐
spite the immense computing power, weather forecasters still long for
a supercomputer that is hundreds of thousands of times more pow‐
erful. Hadoop supercomputers follow in the architectural footsteps of
these powerhouse-modeling machines, but instead of predicting hur‐
ricanes, commercial supercomputers are searching through haystacks
of data for patterns. They’re looking to see if you bought Prada shoes
after your Facebook friend bought a pair. In order for Facebook to
deliver more targeted consumers to advertisers, their Hadoop super‐
computers break up your own data and your friends’ information
haystacks into thousands of piles and analyze every single piece of
straw looking for connections and patterns among shopping habits
and social behavior.

Early experiences of data pattern analysis began to reveal connections
and started to answer questions that were not previously being asked.
From electoral campaigns to insurance providers and restaurant
chains, everyone has discovered new questions to ask big data. For
computing platforms built on brute force and ignorance, they were
suddenly becoming a lot less ignorant. Traditional supercomputers
are still calculators, whereas Hadoop supercomputers are pattern ex‐
plorers. Computers aren’t supposed to be able to predict social behav‐
ior.

62 | Chapter 6: Haystacks and Headgames



Another aspect of computing in the 21st century is the rapid and re‐
lentless accumulation of data, and big data is just the leading wave of
this tsunami. As network connection speeds to consumers increase
further, data transforms from basic text and logs to graphics and even‐
tually HD video in 3D. With 40 to 70 percent of the human brain
dedicated to visual processing, the web will continue to become a high-
resolution visual experience, further disrupting what it means to
broadcast and entertain, because that is the fastest way to transmit
information to a human (for example, it’s faster to tell time from an
analog watch than it is to read digits).

Text consumes little space—this small book would fit onto an old
floppy disk if I could find one—but visual information requires mil‐
lions of megabytes. Processing visual data and eventually “teaching”
computers to “see” images starts to hint at the computational problems
ahead. In a few short years, Hadoop has gone from looking at strings
of characters to macro-blocks of video as it transitioned from being a
tool for discovery to a tool for seeing and understanding what it is
processing.

Lose the Haystack
Big data tools will continue to be useful for a few more years before
they usher in the era of Super-Sized Data. Advances in conventional
computing technology will extend the life of many clusters. Processors
within early clusters were expensive, consumed a lot of power, and
were designed to run software from another era. In commercial su‐
percomputing, analysis is limited by how fast the data can be pulled
into a processor, quickly scanned for patterns, and then discarded to
make room for the next chunk. Processors designed for that other era
became over-heated and under-employed memory controllers.

The generation of extremely low power, cheap processors that are op‐
timized around discovering (not calculating) exabytes of data will
make it possible to build 100,000-node clusters. A cluster this size will
again push the frontiers of what can be discovered, but in the world
where exabytes of high resolution visual data needs to be “seen”, the
superior scalability first made famous by scientific clusters and then
by Hadoop will not be enough. We need to stop looking for the needle
in the haystack by looking at every piece of straw—we need to stop
counting.

Lose the Haystack | 63



The current approach to computing is based on ideas from John Von
Neumann, who is generally credited for the way computers work to‐
day. In a Hadoop cluster, every piece of data is still inspected and if the
pieces remain small, 100,000- node ARM clusters will be able to extend
the shelf life of current “inspecting” clusters. If each piece of hay is a
tweet or a zip code, then the pieces are small. If each piece of hay is
three hours of full-motion HD video, the computing problem of in‐
specting starts to move out of reach even for these massive clusters.
When the cluster has to “see” all the data instead of just inspecting it,
then we need to create more scalable strategies.

Mind Another Gap
The human brain has long been recognized as a unique form of su‐
percomputer. In a crude sense, it is a 50 billion-node cluster that con‐
sists of very high-resolution analog logic combined with a digital FM
transmission fabric between all the nodes. A neuron fires when
enough chemical signals have accumulated across all of its synaptic
gaps. The neuron can be held in a state where it is waiting for the last
molecule to arrive before it will fire. When the last molecule of neu‐
rotransmitter is dumped into one of the many synaptic gaps, the neu‐
ron finally fires.

Your 50-billion-node supercomputer has neurons that have a trigger
resolution that is sensitive to a single molecule, and there are hundreds
of trillions of molecules in your brain. Some of the neurochemicals
come from the things you ingest and some from the RNA of the cells
that are responsible for creating the amino acids that become neuro‐
transmitters. Trying to solve problems like why people get Alzheimer’s
are not yet within reach. Alzheimer’s is an autoimmune disease where
the person’s own brain chemistry attacks the wiring between the neu‐
rons. This disease destroys the fabric and so destroys the person. Re‐
searchers believe that each neural cell is a sophisticated chemical com‐
puter in its own right. Many brain chemicals come from RNA expres‐
sion and some come from your café latte. All of the genetic and envi‐
ronmental chemical processes band together to make up your charm‐
ing self.

Combined with the sheer number of neurons and their interconnec‐
tion, the problem of modeling a human brain with enough accuracy
to answer questions about why people develop schizophrenia, fall in
love, or feel more productive after drinking coffee, requires all of the

64 | Chapter 6: Haystacks and Headgames



brain’s biochemistry to be simulated. However, the computing tech‐
nology needs to advance far beyond even the largest conventional su‐
percomputers we could ever construct. Like weather forecasters, neu‐
rologists can never have enough computing power.

The exponential growth in the amount of data and the scope of prob‐
lems that need attention must be met with an exponential advance‐
ment in the science of counting things. In the future, there will be many
problems that a modest 100 million-node Hadoop cluster can tackle,
but modeling the human cortex won’t be one of them—we have to stop
counting things. So, what might the next step be for computing? It will
still involve some of the parlor tricks already found in Hadoop clusters,
but will also need to steal a few from the supercomputer you are using
now—your noodle.

Believing Is Seeing
My personal interest in neuroscience started because I was born with
Sturge-Weber Syndrome, a rare developmental disorder. Nobody
knows what causes SWS yet, so it’s a good candidate to simulate when
we get our brain cluster built. Its most common symptom is a port
wine stain on the face. The birthmark is caused by an overabundance
of capillaries just under the surface of the skin. The instructions for
creating the right number of capillaries somehow gets messed up dur‐
ing development. If the foul-up occurs along the outer branches of the
5th cranial nerve, the result is a port-wine stain.

If the mistake occurs further up the line and closer to the cortex, then
the brain itself ends up with a port-wine stain of sorts and this is when
the syndrome becomes lethal. Some newborns with the cortical ver‐
sion of SWS have seizures right after birth and must have sections of
their cortex removed with a hemispherectomy in order to stop the
seizures. It is a testament to both the extraordinary elasticity of the
cortex and the relentless, built-in will to survive that some patients can
survive this operation, recover and thrive.

My SWS affected the retina of my right eye. The human eye has a
complex internal network of capillaries that nourish the photorecep‐
tors. These vessels sit in front of the retina (which is why you see flashes
of blood vessels when a doctor shines in a light). My port-wine stain
wasn’t in my cortex, but it was on my face and in my retina. My right
eye wasn’t very healthy and I eventually lost sight in it when I was
twelve. Adolescence is a tough time for many people, but I had to

Believing Is Seeing | 65



relearn how to see and do simple things like hit a baseball or walk down
a crowded hallway. I would later understand the neuroscience and
cognitive processes that were taking place, but it turned out that I spent
my wasted youth re-wiring my cortex.

Simple things like walking down that hallway became my supercom‐
puting problem to solve. As a kid, I was a good baseball player, but fell
into a hitting slump after I became monocular. As I slowly re-learned
how to hit, at some point it became easier because I stopped “seeing”
with my eye and started seeing with my muscles and body position.
Coaches call it spatial intelligence and encourage players to develop
that skill for many sports including hitting and pitching. My brain had
to become more spatially intelligent just to walk down the hallway. In
order to locate a pitch in the strike zone (within an inch or so), precise
and repeated location of the human body in space is required. In order
to have that kind of precision, pitchers are usually born with a natural
spatial intelligence. I have a crude version of this intelligence, but no‐
where near the spatial genius that is Mariano Rivera.

The other change my brain had to make was a greater reliance on the
right hemisphere that is responsible for spatial processing. This hemi‐
sphere must do a lot more spatial work when it is fed with only one
eye’s worth of data. The brain is a stereo device, so with one eye half
the data went missing and then another chunk was lost going from
stereo to mono vision. In order to see, I have to imagine or model a
3D world. Over time, my brain learned to synthesize a three-
dimensional world from a limited amount of two-dimensional data. I
was born left-handed and when I became left-eyed at twelve, then I
became right-brained for both seeing and thinking.

A good example of how well my (and other brains) can spatially model
the world occurs when I have to drive at night in the rain. I should not
be able to do this, and must fully exploit every spatial trick to pull it
off. I battle with low light (no data), deep shadows (contrast flare), and
reflections (visual noise) from wet road surfaces. All these obstacles
result in very little roadway telemetry coming through the windshield.
I can’t possibly see everything that goes by, so I imagine what safely
driving down the freeway might look like and then look for aberrations
in the visual field and use this visual information to correct my internal
model. I had to become a spatial supercomputer to survive, but hu‐
mans with stereovision are also spatial supercomputers—I just need
a few extra plugins. For me, the cliché “I’ll believe it when I see it” has
become “I’ll see it when I believe it.”

66 | Chapter 6: Haystacks and Headgames



Unlike supercomputers, human brains never examine every piece of
hay but have well-developed strategies like associative memory, habi‐
tuated learning and a retina (even a single one) that can reduce data
by orders of magnitude. Brains only look at things that might be in‐
teresting. The future of computing is also going to have to stop sifting
through haystacks and that means saying goodbye to Dr. von Neu‐
mann.

Spatial Intelligence
One of the drawbacks of studying the brain from a computer-centric
perspective is that pretending the brain works like a computer is de‐
ceptively convenient. Although neuroscience has made recent and ex‐
cellent progress, it is still a fairly young science. To be fair to neurol‐
ogists, they have to decipher a 50 billion-node supercomputer using
their own 50 billion-node supercomputers, where no two clusters have
exactly the same version of the operating system and there is no short‐
age of bugs. The next generation of electronic supercomputers will
need to adapt some strategies from the central nervous system that
were perfected after doing live QA for millions of years.

The CNS is easily distracted and lazy—probably not a fan of big data
since it is ruthless about ignoring data that is no longer interesting. It
is interrupt-driven and gets quickly bored with static data. An experi‐
ment you can do with one closed eye is to put gentle pressure on the
side of the open eyeball. This temporarily stops the involuntary jitter
motion of the eye positioning muscles and causes the visual field to
slowly fade to black. The eye muscles constantly need to get the at‐
tention of the photoreceptors or your world fades away. The neural
technique of ignoring data is called habituation. Data that is not
changing is no longer novel. Because the CNS is designed to be easily
distracted, when the balance between habituation and novelty be‐
comes disrupted, disorders like ADD can result.

The eye has about 110 million photoreceptors, but there are only about
one million cables running to the visual cortex, so the reduction in
data between what the jittery retinas receive and what they push up‐
stream is immense. Retinas together spatially encode information like
the width of a hallway that must be navigated. Seeing with two retinas
makes this encoding extremely precise, whereas the precision in my
case must be calculated in the cortex. If I’m tired, sick or tipsy, then I
start to make seeing mistakes. By performing this processing in two

Spatial Intelligence | 67



healthy retinas, the visual cortex is free to concentrate on looking for
someone familiar in a crowded hallway. The human brain can recog‐
nize familiar faces at speeds exceeding the threshold of human per‐
ception. The CNS processes and encodes information at the source,
without the need to bring all of the data into the brain. There is a lot
of computing happening in the periphery and this is what differenti‐
ates brain architecture from the conventional and centralized counting
architectures of computers.

The human brain is a ridiculously powerful spatial supercomputer,
driven by a crafty, lazy and easily distracted nervous system. Recent
FMRI studies of humans playing or even just listening to music reveals
large swaths of the brain lighted like a Christmas tree–we don’t know
why music is so important to humans, but we do know the brain on
music is one very happy supercomputer. Put high-performance ath‐
letes into an FMRI and watch more happy computers at work. Both
big data and eventually this emerging form of spatial supercomputing
will simultaneously be George Orwell’s worst nightmare and Oliver
Sacks’ dream come true.

Associative Supercomputing
The ability to recognize your mother’s face in a crowd, in the blink of
an eye, depends heavily on how your mother’s face was remembered.
Associative memory in the brain is critical to the speed of the facial
recognition engine. I can’t drive down the freeway in the rain at night
if I can’t imagine what a safe version of what that might look like. I
have to have something to compare the crude and incomplete image
coming from my retina. That pattern is stored as complex spatial
memory consisting of road signs and landmarks. This imagination
strategy will not be successful if I can’t remember the stretch of road.

The brain is also good at retrieving more than just the stretch of road.
Spatial memories also come with other pieces of potentially useful
information. A stretch of road might be associated with memories of
short on-ramps, which have a habit of producing unexpected data in
the form of accelerating vehicles. Unexpected situations need to be
minimized, because quickly learning a new situation under impaired
operating conditions produces errors in perception and the disruptive
possibility of a fender bender.

Associative memory indexing is very easy for a brain, but very difficult
using current computing technology. Spatial supercomputers will be

68 | Chapter 6: Haystacks and Headgames



much more difficult to build and early versions will still rely heavily
on the massive, classic supercomputers. New approaches to both
hardware and software design will be required to implement an asso‐
ciative computer that can recognize faces in milliseconds, but I suspect
our first 50-billion node cluster probably won’t be as small as a can‐
taloupe either.

Back from the Future
A Hadoop cluster doesn’t have to be just about crunching big data.
Like HPC clusters, Hadoop works because it busts up a problem into
a thousand pieces and works on them in parallel. With big datasets,
this is pretty much the only way to fly, but for small datasets, things
like Hadoop are equally effective because it is about getting work done
in parallel in much less time. Our retinas are like tiny Hadoop clusters.
If a Hadoop cluster is put on a tiny board with hundreds of processors
and a few TB of memory, then it could be installed into a pair of sun‐
glasses. Brute force and linear parallelism will remain a useful strategy,
but figuring out that only five haystacks out of 5000 are worth search‐
ing will get us to the next threshold of computing.

As hard as I have tried to dispense with the advances in counting in
the last sixty years, the old form of computing won’t go away quickly
or quietly; nor should it. The new form of computing will not be about
counting; it will be a hybrid of classic techniques combined with more
crafty ways of processing information that are similar to the ways our
brains work. Big data is not always going to be about data, nor is it
always going to be about discovery or insight derived from having
improved workflows. It is about the intuition that results from the
brain visually integrating information so quickly that the workflow
becomes unconscious. Whatever the future of computing will be, it
almost certainly starts with a name change.

Back from the Future | 69



Acknowledgments
I appreciate the authoritative feedback and constructive criticism from
my friends and colleagues who have been around since I began writing
this book a million years ago: Ed Gasiorowski, Bruce Nelson, Doug
Rady, and Rikin Shah.

I cannot express enough gratitude to Douglas Paris White who trans‐
lated so many of my non-linear thoughts and opinions into a coherent
form without diminishing my voice.

Thanks to Cynthia and Georgia for suffering through the writing pro‐
cess with me.

Finally, this book is dedicated to the memory of my friend and mentor,
David L. Willingham (1938-2012).


	Cover
	Copyright
	Table of Contents
	Chapter 1. The Wall of Water
	And Then There Was One
	Commercial Supercomputing Comes of Age
	A Stitch in Time
	The Yellow Elephant in the Room
	Scaling Yahoovians
	Supercomputers Are Platforms
	Big Data! Big Bang!
	Endless Possibilities

	Chapter 2. Big Data: The Ultimate Computing Platform
	Introduction to Platforms
	Come Fly with Me
	Computing Platforms
	The End of an Era
	Back to the Future
	Engineering Big Data Platforms
	The Art and Craft of Platform Engineering
	KISS Me Kate
	Perpetual Prototyping
	Optimize Everything at Internet Scale
	The Response Time Continuum
	Epic Fail Insurance
	Mind the Gap
	I’ll Take Silos for $1000, Alex

	Chapter 3. Organizations: The Other Platform
	From Myelin to Metal
	Silos
	Industrial Grain Elevators
	Platforms 1, Silos 0
	Panic! Now!
	Fear and Loathing
	Risky Business
	Probability and Outcome
	Quantitative Qualities
	The Soft Platform

	Chapter 4. The Reservoir of Data
	The Actual Internet
	Best of Inbred
	Drowning Not Waving
	Spinning Rust
	A Spectrum of Perishability
	Enclosed Water Towers
	The Big Data Water District
	The HDFS Reservoir
	Third Eye Blind
	Spectrum of Analytic Visibility
	The Cost of Flexibility

	Chapter 5. Cloudy with a Chance of Meatballs: When Clouds Meet Big Data
	The Big Tease
	Scalability 101
	Motherboards and Apple Pie
	Being and Nothingness
	Parity Is for Farmers
	Google in Reverse
	Isolated Thunderstorms
	The Myth of Private Clouds
	My Other Data Center Is an RV Park
	Converge Conventionally

	Chapter 6. Haystacks and Headgames
	The Demise of Counting
	Lose the Haystack
	Mind Another Gap
	Believing Is Seeing
	Spatial Intelligence
	Associative Supercomputing
	Back from the Future
	Acknowledgments


