
data-informed.com • February 19, 2014 • 1

The emergence of YARN for the Hadoop 2.0 platform

has opened the door to new tools and applications that

promise to allow more companies to reap the beneits
of big data in ways never before possible with outcomes

possibly never imagined. By separating the problem of

cluster resource management from the data processing

function, YARN ofers a world beyond MapReduce: less-
encumbered by complex programming protocols, faster,

and at a lower cost.

Yet while many Hadoop applications have migrated

and other migrations are in process, most of these

applications still cling to the original Hadoop paradigm:
MapReduce. That’s like putting lipstick on a pig (no
pun intended). These programs basically dress up the

same functionality without taking advantage of the new
capabilities of YARN. Why is YARN important? Some

background may help.

Hadoop was irst developed in 2005 by Doug Cutting
and Mike Carafella with the help and blessing of Yahoo,
which to this day runs the largest Hadoop cluster in the

world. Hadoop was open-sourced under the auspices
of Apache, and major contributors include Hortonworks,
Yahoo, Cloudera, and many others. Throughout Hadoop’s
development, until October 2013 with the release

of Hadoop 2.0, MapReduce was the computational

framework. If you wanted to crunch data under Hadoop,
you wrote or generated MapReduce code. Hadoop 2.0
changed that.

Under Hadoop 2.0, MapReduce is but one instance of a
YARN application, where YARN has taken center stage as
the “operating system” of Hadoop. Because YARN allows

any application to run on equal footing with MapReduce,
it opened the loodgates for a new generation of software

How YARN Opens Doors to
Easier Programming Tools
for Hadoop 2.0 Users
by John Lilley | February 19, 2014

applications with these kinds of features:

More programming models.

Because YARN supports any application that can divide

itself into parallel tasks, they are no longer shoehorned
into the palette of “mappers,” “combiners,” and

“reducers.” This in turn supports complex data-low
applications like ETL and ELT, and iterative programs like
massively-parallel machine learning and modeling.

Integration of native libraries.

Because YARN has robust support for any executable –

not limited to MapReduce, and not even limited to Java
– application vendors with a large mature code base have

a clear path to Hadoop integration.

Support for large reference data.

YARN automatically “localizes” and caches large

reference datasets, making them available to all nodes
for “data local” processing. This supports legacy

functions like address standardization, which require
large reference data sets that cannot be accessed from

the Hadoop Distributed File System (HDFS) by the legacy
libraries.

Despite these innovations, most Hadoop software
developers are stuck in the Hadoop 1.0 mindset. They’ve
sacriiced a “bigger leap” to broader availability and
greater usability of Hadoop 2.0’s powerful resources in
exchange for early market entry. The efect for users:
Hadoop still has a tall fence around it. Most Hadoop
applications still sufer from one or more of these
deiciencies:

• They feel like programming tools, exposing too much
 Java or scripting.

data-informed.com • February 19, 2014 • 2

• Their “in Hadoop” software is a small feature subset of
 their “legacy” software.

• They don’t run in Hadoop at all, instead pushing
 queries through Pig or Hive, and are limited by the

 volume of data that can be pulled from Hadoop to the

 “outside.”

• They generate MapReduce, which while not a
 problem in theory, tends to make applications feel like
 “MapReduce veneers.”

Fortunately, ISVs are starting to realize that the power
of Hadoop 2.0 lies in enabling applications to run inside

Hadoop, without the constraints of MapReduce. Vendors
like my company, RedPoint Global, as well as Revolution
Analytics, Actian, and Talend are starting to create

applications that, to greater or lesser extent, feel like
more than glossy MapReduce programming veneers.

One of the most exciting developments is a new

crop of “visual data-low design” applications. These
applications have been around for years, even decades,

in the classic world of ETL, ELT, data quality, and
analytic databases. These mature products are used

continuously by thousands of non-programmers to

solve data problems including marketing analytics, fraud
detection, clickstream monitoring, replication, and master
data management. The accessibility of these solutions to

analysts and “data scientists” is critical.

MapReduce Expertise Hard to Come By.

MapReduce is a software framework that developers
have been using for years to generate programs for

Hadoop. While the popularity of Hadoop has grown—

advanced even more thanks to the hype around big
data—the number of MapReduce programmers hasn’t
climbed as fast. The bulk of them can be found in
Internet companies and lashy start-ups, and if you’re
a large company you might have a shot at hiring a few

of them. But big demand and low inventory means

companies are paying a premium for MapReduce skills.

The reason is that, like many parallel programming
models, MapReduce introduces fairly specialized
concepts that might be alien—even to seasoned

programmers. And thinking in MapReduce isn’t
necessarily easy. While certain problems can be

expressed quite simply, translating a real business

problem into MapReduce patterns and idioms, requires
experience, training, and insight.

And, while MapReduce can be written in many diferent
languages—including Python, R, Lisp, C#, C++, and
Ruby—most MapReduce programs are implemented in
Java since only Java supports the full MapReduce feature
set. Some companies have been able to retrain their Java

developers and infrastructure engineers on MapReduce
and Hadoop. But in doing so, they just increased their

employee’s market value, and potentially just trained their
competitor’s new hires.

Of course, MapReduce isn’t the only option for
processing data at scale using Hadoop. Tools like Pig
(a large scale query and analysis system), Hive (a data
warehousing application) and others have been available

for some time. These tools can express transforms and

analysis using more accessible constructs: Hive uses
HQL, a language similar to SQL. Pig provides a script
language (Pig Latin) to create MapReduce jobs. Business
analysts familiar with conventional tools like SQL and
SAS should be able to use these tools to write programs

to solve large data problems on Hadoop clusters. But,

in both cases, there’s an additional commitment of time:
irst, to learn these languages and second, to manage
what has morphed from a data analysis problem into a

software development task.

The Value of Visual Application Development Tools.

A new generation of “visual design” application

development tools could help solve these coding

problems. By running as native YARN applications and

side-stepping the need for MapReduce, some of these
programs eliminate coding altogether. Other tools reduce

coding by generating MapReduce code or by generating
scripts like Pig. Visual designers are powerful for several
reasons:

• Increased level of abstraction: Instead of thinking
 about classes and methods, users see operations,

 data, and outcomes.

• Fast “what-if”: The drag-and-connect interface
 supports quick try/observe/adjust cycles.

• Automatic optimization: Scaling and eiciency are
 built-in.

• High-level palette: High-level constructs like
 “standardize address”, “deduplicate consumers”, or

 “parse names” are often directly on the designer

 palette.

But so much for theory. How does this look in practice?
Here’s an illustration that shows how three competing
approaches difer:

• MapReduce written in Java

• Pig scripts developed from scratch

• A visually-designed process running a native YARN
 ETL application. The application is from RedPoint
 Global, but comparable approaches can be seen in
 Talend and Actian.

data-informed.com • February 19, 2014 • 3

Using these three approaches, we conducted a “Word

Count” test on 30,000 iles (20 gigabytes) of Project
Gutenberg books. This test reads lines of text, breaks
them into words, and creates a concordance (list of
words and the number of times each occurs). Our

Hadoop cluster was small—only four nodes—but

was large enough to demonstrate the concepts and

tradeofs. To make the test more realistic, we also
required that common punctuation characters be stripped

from the text and that the results were sorted descending

by count.

Here’s what we
found:

MapReduce:

Set-up time:

While lexible,
MapReduce
had the longest

learning curve

and required

signiicant coding
skills—both as a
Java programmer
and a MapReduce
specialist—to

prepare the test.

Performance: It
took 3 hours 20
minutes to run

the test initially

due to the “small

iles problem”
that is familiar

to seasoned

MapReduce
programmers. This

problem occurs

when reading

large collections of small iles, because MapReduce’s
default behavior is to assign a mapper task to each ile.
This results in a huge number of tasks. To address this
issue, we created a custom InputFormat class to read
multiple iles at once. This reduced our run time to 58
minutes. Then we tuned the split sizes and mapper task
limit appropriately, which dropped the run time to about

six minutes. Further tweaks, such as adding a combiner
to “pre-aggregate” the counts in the mappers and
optimizing the counting process using in-memory tables,
lowered the time to below three minutes.

Comments: Each performance improvement came at a
cost. Overall, nearly a full day of programmer time was

spent optimizing the original code.

Pig:

Set-up time: Learning Pig was fairly easy. It was pretty
natural to create the coding for this test. However to

make a common adjustment in the code—changing the
set of whitespace separators to include punctuation—

required the addition of a “User deined function” or
UDF which had to be written in Java. Pig is generally
easy enough to use by people who aren’t professional
programmers but who know how to write scripting
languages like JavaScript or Visual Basic.

Performance: The

results were not

stellar: run time
was close to 15
minutes.

Comments: While

coding took
less time, Java
programming was

ultimately required

to meet the test

requirements.

YARN-enabled

ETL/ELT

designer:

Set-up time: The

tool is designed

to have a shorter

learning curve than

even Pig scripting.

Dragging tools like
“Delimited Input”,
“Summarize”

and “Tokenize”
from the palette

and coniguring
them is designed to be discoverable and intuitive, and

the resulting diagram has a one-to-one correspondence
between icons and operations. There’s no need for
coding or learning a language like Java or Pig. The
visual design covers the input ile format, tokenizing and
counting steps. The resulting data low graph contains
seven icons along with a grouping construct that shows

what executes “inside” Hadoop. Each icon represents a
step in the data transformation.

Performance: The run time for this data low is just over
three minutes with no tuning.

Comments: Because there is no code to manage, and

editing is done visually, running “what if” scenarios

is quick for non-programmers. Once the data low is

data-informed.com • February 19, 2014 • 4
Reprinted with permission © 2014 Wellesley Information Services All rights reserved

RedPoint Global inc.

36 WAShIngton St., SuIte 120, WelleSley hIllS, MA 02481 uSA

+1 781 725 0250 | www.redpoint.net | contact.us@redpoint.net

�

®

designed, it can

be stored and

saved for later

use. In addition,
the logic can

be captured

into a “macro”

for sharing and

reuse between

multiple data

lows.

While this

Project

Gutenberg
exercise

may not be a

“real world”

benchmark—
counting words

isn’t likely to
be the problem

you want to

solve—it was

instructive in

terms of the

comparative

productivity of

MapReduce
versus a tool that is optimized for YARN. Companies that
really want to reap the beneits of Hadoop 2.0 need to
bypass code-intensive approaches and look at a new
breed of development tools that solve problems using a

YARN-enabled ETL/ELT designer:
model suitable for

data analysts who

know how to do
typical SQL queries
and who don’t have
Java or MapReduce
expertise. With

Hadoop 2.0, tools

that leverage

YARN’s less-
restrictive execution

model have a

chance to lourish
and bring clear

productivity gains

to a broader base

of businesses than

ever before.

John Lilley is

chief architect for

RedPoint Global,

Inc. He has been

developing high-

performance

software for 20 years

with an emphasis

on data integration,

data quality and

marketing analytics. He founded DataLever in 1999 and

became leader of the RedPoint Global Data Management

engineering team in 2011. He can be reached at:

www.linkedin.com/in/johnelilley.

