
Moving beyond  
MapReduce and Batch Processing 
with Apache Hadoop™ 2

ARUN MURTHY 
With Jeff Markham, Vinod Kumar Vavi lapal l i ,  and Doug Eadl ine

MURTHY

APACHE
HADOOP™

YARN
A

PA
C

H
E

 H
A

D
O

O
P

™ YA
R

N

Addison 
Wesley  
Data & 

Analytics 
Series



 
 
 
 
 
 
 
 

Apache Hadoop YARN will be published 
in the winter of 2014, with continually 
updated drafts available on Safari Books 
Online (www.safaribooksonline.com). 
 

Draft Manuscript 
This manuscript has been provided by Pearson Education and Hortonworks at this early stage to 
create awareness for the upcoming publication. It has not been fully copyedited or proofread; we 
trust that you will judge this book on technical merit, not on grammatical and punctuation errors that 
will be corrected prior to publication. 
 
 
 
 
 
 
 
 
 
 
 

Learn how to implement and use YARN, the new 
generation of Apache Hadoop that empowers 
applications of all types to move beyond batch and 
implement new distributed applications IN Hadoop! 

This authoritative guide is the best source of information for getting started with, and then mastering, 
the latest advancements in Apache Hadoop. As you learn how to structure your applications in 
Apache Hadoop 2, it provides you with an understanding of the architecture of YARN (code name for 
Hadoop 2) and its major components. In addition to multiple examples and valuable case studies, a 
key topic in the book is running existing Hadoop 1 applications on YARN and the MapReduce 2 
infrastructure. 

Data processing in Apache Hadoop has undergone a complete overhaul,  emerging as Apache 
Hadoop YARN. This generic compute fabric provides resource management at datacenter scale and a 
simple method by which to implement distributed applications (MapReduce and a multitude of 
others) to process petabytes of data on Apache Hadoop HDFS. YARN significantly changes the 
game, recasting Apache Hadoop as a much more powerful system by moving it beyond MapReduce 
into additional frameworks. Two of the primary authors of the YARN project, Arun C. Murthy, the 
Founder of the YARN project, and Vinod K. Vavilapalli, the YARN Project Lead, take you through 
the key design concepts of YARN itself. They also provide you a tour of how new applications can be 
written in an elegant and simple manner to get more out of Hadoop clusters as Hadoop is no longer a 
one-trick pony. Learn how existing MapReduce applications can be seamlessly migrated to YARN in 
a hassle-free manner and how other existing components in Apache Hadoop ecosystem such as 
Apache Hive, Apache Pig & Apache HBase improve thanks to YARN. 
 

 



 

Apache Hadoop™ 
YARN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



T he Addison-Wesley Data & Analytics Series provides readers with practical knowledge 
for solving problems and answering questions with data. Titles in the series will tackle 
three primary areas of focus:

1) Infrastructure:  how to store, move, and manage data

2) Algorithms:  how to mine intelligence or make predictions based on data

3)  Visualizations:  how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end 
systems for fighting spam, making recommendations, building personalization, detecting 
trends, patterns, or problems and gaining insight from the data exhaust of systems and 
user interactions.

 

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us! 
informit.com/socialconnect

The Addison-Wesley Data & Analytics Series



Apache Hadoop™ 
YARN 

Moving Beyond MapReduce and  
Batch Processing with  

Apache Hadoop 2 

Arun Murthy 
 

with 
Jeffrey Markham 
Vinod Vavilapalli 

Doug Eadline 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco 
New York • Toronto • Montreal • London • Munich • Paris • Madrid 

Cape Town • Sydney • Tokyo • Singapore • Mexico City 



Many of the designations used by manufacturers and sellers to distinguish their products 
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial 
capital letters or in all capitals. 

The authors and publisher have taken care in the preparation of the early draft of this 
manuscript, but make no expressed or implied warranty of any kind and assume no re-
sponsibility for errors or omissions. No liability is assumed for incidental or consequential 
damages in connection with or arising out of the use of the information or programs con-
tained herein. 

Upon publication the publisher offers excellent discounts on this book when ordered in 
quantity for bulk purchases or special sales, which may include electronic versions and/or 
custom covers and content particular to your business, training goals, marketing focus, 
and branding interests. For more information, please contact: 

     U.S. Corporate and Government Sales 
     1-800-382-3419 
     corpsales@pearsontechgroup.com 
 
For sales outside of the U.S., please contact™ 
 
     International Sales 
     international@pearsoned.com 
 
Visit us on the Web: informit.com/aw 

Library of Congress Cataloging-in-Publication Data 

Copyright © 2014 Hortonworks Inc.  

Apache, Apache Hadoop, and Hadoop are trademarks of The Apache Software Founda-
tion. Used with permission. No endorsement by The Apache Software Foundation is im-
plied by the use of these marks.  

Hortonworks is a trademark of Hortonworks, Inc., registered in the U.S. and other coun-
tries 

All rights reserved. Printed in the United States of America. This publication is protected 
by copyright, and permission must be obtained from the publisher prior to any prohibited 
reproduction, storage in a retrieval system, or transmission in any form or by any means, 
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use 
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you 
may fax your request to (201) 236-3290. 

Executive  
Editor 
Debra Williams Cauley 
Senior Development  
Editor 
Chris Zahn 
Managing Editor 
John Fuller 
Publishing  
Coordinator 
Kim Boedigheimer 
Book Designer 
Chuti Prasertsith 



Contents at a Glance 
Preface  1 

1 YARN Quick Start  1 

 Get started quickly with some simple installation 
recipes. 

2 YARN and the Hadoop Ecosystem  11 

 Understand where YARN fits and the advantage 
it offers to the Hadoop ecosystem. 

3 Functional Overview of YARN Components  -- 

 Learn how YARN components function to deliver  
improved performance and manageability. 

4 Installing YARN  --  

 Detailed installation scenarios are provided along 
with instructions on how to upgrade from Hadoop 
1.x. 

5 Running Applications with YARN  -- 

 Learn how to run existing applications including 
Pig and Hive under YARN. 

6 YARN Administration  -- 

 Learn how to administer YARN and adjust options 
including the fair and capacity scheduling modules. 

7 YARN Architecture Guide  -- 

 A detailed in-depth discussion of YARN design is 
provided. 

8 Writing a Simple YARN Application  -- 

 Learn a high-level way to implement new 
applications for YARN. 

9 Using YARN Distributed Shell  -- 

 Understand the YARN API and learn how to  
create distributed YARN applications. 



10 Accelerating Applications with Apache Tez  -- 

 Provide human-interactive Apache Hive, Apache Pig and 
Cascading applications using an enhanced data-
processing engine 

11 YARN Frameworks  -- 

 Explore some of the new YARN frameworks 
including Apache Giraph, Spark, Tomcat, and 
others. 

A Navigating and Joining the Hadoop  
Ecosystem  -- 

B HDFS Quick Start  -- 

C YARN Software API Reference  -- 

 Index  -- 



About the Authors 
Arun Murthy has contributed to Apache Hadoop full-time since the inception of the project in 
early 2006. He is a long-term Hadoop Committer and a member of the Apache Hadoop Project 
Management Committee. Previously, he was the architect and lead of the Yahoo Hadoop Map-
Reduce development team and was ultimately responsible, technically, for providing Hadoop 
MapReduce as a service for all of Yahoo—currently running on nearly 50,000 machines! Arun 
is the Founder and Architect of the Hortonworks Inc., a software company that is helping to 
accelerate the development and adoption of Apache Hadoop. Hortonworks was formed by the 
key architects and core Hadoop committers from the Yahoo! Hadoop software engineering team 
in June 2011. Funded by Yahoo! and Benchmark Capital, one of the preeminent technology 
investors, their goal is to ensure that Apache Hadoop becomes the standard platform for storing, 
processing, managing and analyzing big data. He lives in Silicon Valley. 
 

Jeff Markham is a Solution Engineer at Hortonworks Inc., the company promoting open source 
Hadoop. Previously, he was with VMware, Red Hat, and IBM helping companies build distrib-
uted applications with distributed data. He's written articles on Java application development 
and has spoken at several conferences and to Hadoop User Groups. Jeff is a contributor to 
Apache Pig and Apache HDFS. 
 

Vinod Kumar Vavilapalli has been contributing to Apache Hadoop project full-time since mid-
2007. At Apache Software Foundation, he is a long term Hadoop contributor, Hadoop commit-
ter, member of the Apache Hadoop Project Management Committee and a Foundation Member. 
Vinod is a MapReduce and YARN go-to guy at Hortonworks Inc. For more than five years  he 
has been working on Hadoop and still has fun doing it. He was involved in HadoopOnDemand, 
Hadoop-0.20, CapacityScheduler, Hadoop security, MapReduce and now is a lead developer 
and the project lead for Apache Hadoop YARN. Before Hortonworks, he was at Yahoo! work-
ing in the Grid team that made Hadoop what it is today, running at large scale—up to tens of 
thousands of nodes. Vinod loves reading books, of all kinds, and is passionate about using com-
puters to change the world for better, bit by bit. He has a Bachelors degree from the Indian Insti-
tute of Technology Roorkee in Computer Science and Engineering. He lives in Silicon Valley 
and is reachable at twitter handle @tshooter. 
 

Douglas Eadline, PhD, began his career as a practitioner and a chronicler of the Linux Cluster 
HPC revolution and now documents big data analytics. Starting with the first Beowulf How To 
document, Dr. Eadline has written hundreds of articles, white papers, and instructional docu-
ments covering virtually all aspects of HPC computing. Prior to starting and editing the popular 
ClusterMonkey.net web site in 2005, he served as Editor-in-chief for ClusterWorld Magazine, 
and was Senior HPC Editor for Linux Magazine. Currently, he is a consultant to the HPC indus-
try and writes a monthly column in HPC Admin Magazine. Both clients and readers have recog-
nized Dr. Eadline's ability to present a "technological value proposition" in a clear and accurate 
style. He has practical hands on experience in many aspects of HPC including, hardware and 
software design, benchmarking, storage, GPU, cloud, and parallel computing. He is the author 
of Hadoop Fundamentals LiveLessons video from Pearson. 



1 
YARN Quick Start 

A production Apache Hadoop system can take time to set up properly and is not necessary to 
start experimenting with many of the YARN concepts and attributes. This chapter provides a 
quick start guide to installing Hadoop version 2.0.4 on a single machine (workstation, server, or 
hefty laptop).  

A more complete description of other installation options such as those required by a 
production cluster setup is given in Chapter 4, “Installing YARN.” Before we begin with the 
quick start though, there are a few background skills that will help with installation. These 
skills include rudimentary knowledge of Linux, package installation, and basic system 
administration commands.  

A basic Apache Hadoop YARN system has two core components: 

▪ The Hadoop Distributed File System for storing data, which will be referred to as HDFS. 

▪ Hadoop YARN for implementing applications to process data.  

There are other Apache Hadoop components, such as Pig or Hive, that can be added after the 
two core components are installed and operating properly.  

Steps to Configure a Single Node YARN Server 
The following type of installation is often referred to as “pseudo distributed” because it mimics 
some of the functionality of a distributed Hadoop cluster. A single machine is, of course, not 
practical for any production use, nor is it parallel.  A small scale Hadoop installation can 
provide a simple method for learning Hadoop basics, however.  

The recommended minimal installation hardware is a dual-core processor with 2 GBs of RAM 
and 2 GBs of available hard drive space. The system will need a recent Linux distribution with 
Java installed (Red Hat Enterprise Linux or rebuilds, Fedora, Suse Linux Enterprise, or 
OpenSuse). Red Hat Enterprise Linux 6.3 is used for this installation example. A bash shell 
environment is also assumed. The first step is to download Apache Hadoop. 
 



Chapter 1 YARN Quick Start 2 

Step 1: Download Apache Hadoop   
Download the latest distribution from the Hadoop web site (http://hadoop.apache.org/). For 
example, as root do the following: 
# cd /root 

# wget http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.0.4-alpha/hadoop-2.0.4-
alpha.tar.gz 

Next create and extract the package in /opt/yarn: 
# mkdir /opt/yarn 

# cd /opt/yarn 

# tar xvzf /root/hadoop-2.0.4-alpha.tar.gz 

 If the archive was extracted correctly, the following directory structure should be under 
/opt/yarn/hadoop-2.0.4-alpha. (Note that, depending on the source distribution, your version 
may be different.) 
etc/ 

+ hadoop 

include/ 

lib/ 

+ native 

libexec/ 

sbin/ 

share/ 

+ doc 

   + . . . 

+ hadoop 

   + . . . 

The rest of these steps will create a basic single machine YARN installation.  

Step 2: Set JAVA_HOME 
For Hadoop 2, the recommended version of Java can be found at 
http://wiki.apache.org/hadoop/HadoopJavaVersions. As mentioned, Red Hat Enterprise Linux 
6.3 is the base installation which includes Open Java 1.6.0_24.  Make sure the java-1.6.0-
openjdk RPM is installed.  In order to include JAVA_HOME for all bash users (others shells 
must be set in a similar fashion) make an entry in /etc/profile.d: 
# echo "export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/" > 
/etc/profile.d/java.sh 

To make sure JAVA_HOME is defined for this session, source the new script: 
# source /etc/profile.d/java.sh 

Other Linux distributions may differ, and the steps that follow will need to be adjusted. 



Steps to Configue a Single Node YARN Server 3 

Step 3: Create Users and Groups 
It is best to run the various daemons with separate accounts. Three accounts (yarn, hdfs, 
mapred) in group hadoop can be created as follows: 
# groupadd hadoop 

# useradd -g hadoop yarn 

# useradd -g hadoop hdfs 

# useradd -g hadoop mapred 

Step 4: Make Data and Log Directories 
Hadoop needs various data and log directories with various permissions. Enter the following to 
create these directories: 
# mkdir -p /var/data/hadoop/hdfs/nn 

# mkdir -p /var/data/hadoop/hdfs/snn 

# mkdir -p /var/data/hadoop/hdfs/dn 

# chown hdfs:hadoop /var/data/hadoop/hdfs -R 

# chown yarn:hadoop /var/log/hadoop/yarn -R 

Next, move to the YARN installation root and create the log directory and set the owner and 
group as follows: 
# cd /opt/yarn/hadoop-2.0.4-alpha 

# mkdir logs# chmod g+w logs# chown yarn:hadoop . -R 

Step 5: Configure core-site.xml   
From the base of the Hadoop installation path (e.g., /opt/yarn/hadoop-2.0.4-alpha/), edit the 
etc/hadoop/core-site.xml file. The original installed file will have no entrees other than the 
<configuration> </configuration> tags. There are two properties that need to be set. The 
first is the fs.default.name property that sets the host and request port name for the NameNode 
(Metadata server for HDFS).  The second is hadoop.http.staticuser.user, which will set the 
default user name to hdfs. Copy the following lines to the Hadoop etc/hadoop/core-site.xml file 
and remove the original empty <configuration> </configuration> tags.  
<configuration> 

       <property> 

               <name>fs.default.name</name> 

               <value>hdfs://localhost:9000</value> 

       </property> 

       <property> 

               <name>hadoop.http.staticuser.user</name> 

               <value>hdfs</value> 

       </property> 

</configuration> 



Chapter 1 YARN Quick Start 4 

Step 6: Configure hdfs-site.xml 
From the base of the Hadoop installation path, edit the etc/hadoop/hdfs-site.xml file. In the 
single node pseudo distributed mode, we don’t need or want the HDFS to replicate file blocks.  
By default, HDFS keeps three copies of each file in the filesystem. There is no need for 
replication on a single machine, thus the dfs.replication value will be set to one.  

In hdfs-site.xml, we specify the NameNode, Secondary NameNode, and DataNode data 
directories that we created in Step 4. These are the directories used by the various components 
of HDFS to store data. Copy the following into Hadoop etc/hadoop/hdfs-site.xml and remove 
the original empty <configuration> </configuration> tags.  
<configuration> 

 <property> 

   <name>dfs.replication</name> 

   <value>1</value> 

 </property> 

 <property> 

   <name>dfs.namenode.name.dir</name> 

   <value>file:/var/data/hadoop/hdfs/nn</value> 

 </property> 

 <property> 

   <name>fs.checkpoint.dir</name> 

   <value>file:/var/data/hadoop/hdfs/snn</value> 

 </property> 

 <property> 

   <name>fs.checkpoint.edits.dir</name> 

   <value>file:/var/data/hadoop/hdfs/snn</value> 

 </property> 

 <property> 

   <name>dfs.datanode.data.dir</name> 

   <value>file:/var/data/hadoop/hdfs/dn</value> 

 </property> 

</configuration> 

Step 7: Configure mapred-site.xml 
From the base of the Hadoop installation, edit the etc/hadoop/mapred-site.xml file. A new 
configuration option for Hadoop 2 is the capability to specify a framework name for 
MapReduce, setting the mapreduce.framework.name property. In this install we will use the 
value of "yarn" to tell MapReduce that it will run as a YARN application. First, copy the 
template file to the mapred-site.xml.  
# cp mapred-site.xml.template mapred-site.xml 

Next, copy the following into Hadoop etc/hadoop/mapred-site.xml file and remove the original 
empty <configuration> </configuration> tags.  
<configuration> 



Steps to Configue a Single Node YARN Server 5 

<property> 

   <name>mapreduce.framework.name</name> 

   <value>yarn</value> 

 </property> 

</configuration> 

Step 8: Configure yarn-site.xml 
From the base of the Hadoop installation, edit the etc/hadoop/yarn-site.xml file. The 
yarn.nodemanager.aux-services property tells NodeManagers that there will be an auxiliary 
service called mapreduce.shuffle that it needs to implement.  After we tell the NodeManagers to 
implement that service, we give it a class name as the means to implement that service.  In this 
case, it’s the yarn.nodemanager.aux-services.mapreduce.shuffle.class.  Specifically, 
what this particular configuration does is tell MapReduce how to do its shuffle. Because 
NodeManagers won’t shuffle data for a non-MapReduce job by default, we need to configure 
such a service for MapReduce. Copy the following to the Hadoop etc/hadoop/yarn-site.xml file 
and remove the original empty <configuration> </configuration> tags.  
<configuration> 

<property> 

   <name>yarn.nodemanager.aux-services</name> 

   <value>mapreduce.shuffle</value> 

 </property> 

 <property> 

   <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> 

   <value>org.apache.hadoop.mapred.ShuffleHandler</value> 

 </property> 

</configuration> 

Step 9: Modify Java Heap Sizes 
The Hadoop installation has various environment variables that determine the heap sizes for 
each Hadoop process.   These are defined in the etc/hadoop/*-env.sh files  used by Hadoop.  
The default for most of the processes is a 1GB heap size, but since we’re running on a 
workstation that will probably have limited resources compared to a standard server, we need to 
adjust the heap size settings.  The values that follow are what are adequate for a small 
workstation or server.  They can be adjusted to fit your machine. 

Edit etc/hadoop/hadoop-env.sh file to reflect the following (Don't forget to remove the "#" at 
the beginning of the line.): 
HADOOP_HEAPSIZE=500 

HADOOP_NAMENODE_INIT_HEAPSIZE="500" 

Next, edit the mapred-env.sh to reflect the following: 
        HADOOP_JOB_HISTORYSERVER_HEAPSIZE=250 

Finally, edit yarn-env.sh to reflect the following: 



Chapter 1 YARN Quick Start 6 

JAVA_HEAP_MAX=-Xmx500m  

The following will need to added to  yarn-env.sh 
YARN_HEAPSIZE=500 

Step 10: Format HDFS 
In order for the HDFS NameNode to start, it needs to initialize the directory where it will hold 
its data.  The NameNode service tracks all the meta-data for the filesystem. The format process 
will use the value assigned to dfs.namenode.name.dir in  etc/hadoop/hdfs-site.xml earlier (i.e., 
/var/data/hadoop/hdfs/nn). Formatting destroys everything in the directory and sets up a new 
file system.  Format the NameNode directory as the HDFS superuser, which is typically the 
‘hdfs’ user account. 

From the base of the Hadoop distribution, change directories to the ‘bin’ directory and execute 
the following commands. 
# su - hdfs 

$ cd /opt/yarn/hadoop-2.0.4-alpha/bin 

$./hdfs namenode -format 

If the command worked, you should see the following near the end of a long list of messages: 
INFO common.Storage: Storage directory /var/data/hadoop/hdfs/nn has been successfully 
formatted. 

Step 11: Start the HDFS Services 
Once formatting is successful, the HDFS services must be started. There is one for the 
NameNode (metadata server), a single DataNode (where the actual data is stored), and the 
SecondaryNameNode (checkpoint data for the NameNode). The Hadoop distribution includes 
scripts that set up these commands as well naming various other values like PID directories, log 
directories, and other standard process configurations.  From the sbin directory from Step 10 
execute the following as user hdfs: 
$ cd ../sbin 

$ ./hadoop-daemon.sh start namenode starting namenode, logging to /opt/yarn/hadoop-
2.0.4-alpha/logs/hadoop-hdfs-namenode-limulus.out 

$ ./hadoop-daemon.sh start secondarynamenodestarting secondarynamenode, logging to 
/opt/yarn/hadoop-2.0.4-alpha/logs/hadoop-hdfs-secondarynamenode-limulus.out 

$ ./hadoop-daemon.sh start datanodestarting datanode, logging to /opt/yarn/hadoop-
2.0.4-alpha/logs/hadoop-hdfs-datanode-limulus.out 

If the daemon started, you should see responses above that will point to the log file. (Note that 
the actual log file is appended with ".log" not ".out.") . As a sanity check, issue a jps command 
to see that all the services are running. The actual PID values will be different than shown in 
this listing: 
$ jps 

15140 SecondaryNameNode 

15015 NameNode 



Steps to Configue a Single Node YARN Server 7 

15335 Jps 

15214 DataNode 

If the process did not start, it may be helpful to inspect the log files. For instance, examine the 
log file for the NameNode. (Note that the path is taken from the command above.) 
vi /opt/yarn/hadoop-2.0.4-alpha/logs/hadoop-hdfs-namenode-limulus.log 

All Hadoop services can be stopped using the hadoop-daemon.sh script.  For example, to stop 
the datanode service enter the following: 
$ ./hadoop-daemon.sh stop datanode 

The same can be done for the Namenode and SecondaryNameNode 

Step 12: Start YARN Services 
As with HDFS services, the YARN services need to be started.  One ResourceManager and one 
NodeManager must be started as user yarn: 
# su - yarn 

$ cd /opt/yarn/hadoop-2.0.4-alpha/sbin 

$ ./yarn-daemon.sh start resourcemanager 

starting resourcemanager, logging to /opt/yarn/hadoop-2.0.4-alpha/logs/yarn-yarn-
resourcemanager-limulus.out 

$ ./yarn-daemon.sh start nodemanager 

starting nodemanager, logging to /opt/yarn/hadoop-2.0.4-alpha/logs/yarn-yarn-
nodemanager-limulus.out 

As with starting the HDFS daemons in the previous step, the status of running daemons is sent 
to the respective log files. To check whether the services are running  issue  a jps command. 
The following shows all the necessary services to run YARN on a single server:  
$ jps 

15933 Jps 

15567 ResourceManager 

15785 NodeManager 

In if there are missing services, check the log file for the specific service.. Similar to HDFS, the 
services can be stopped by issuing a stop argument to the daemon script: 
./yarn-daemon.sh stop nodemanager 

Step 13: Verify the Running Services Using the Web Interface 
Both HDFS and the YARN Resource Manager have a web interface. These interfaces are a 
convenient way to browse many of the aspects of your Hadoop installation. To monitor HDFS 
enter the following: 
$ firefox  http://localhost:50070 

Connecting to port 50070 will bring up the web interface similar to what is shown in Figure 
1.1. 



Chapter 1 YARN Quick Start 8 

 

 

Figure 1.1 Webpage for HDFS filesystem 

A web interface for the Resource Manager can be viewed by entering the following: 
$ firefox http://localhost:8088 

A web page similar to what is shown in Figure 1.2 will be displayed.  

Run Sample MapReduce Examples 
To test your installation, run the sample "pi" program that calculates the value of Pi using a 
quasi-Monte Carlo method and MapReduce. Change to user hdfs and run the following: 
# su - hdfs 

$ cd /opt/yarn/hadoop-2.0.4-alpha/bin 

$ ./hadoop jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.0.4-alpha.jar pi -
Dmapreduce.clientfactory.class.name=org.apache.hadoop.mapred.YarnClientFactory -libjars 
../share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.0.4-alpha.jar 16 1000 



Run Sample MapReduce Examples 9 

  

 

Figure 1.2 Webpage for YARN Resource Manager 

If the program worked correctly, the following should be displayed at the end of the program 
output stream: 
Estimated value of Pi is 3.14250000000000000000 

This  previous example submits a MapReduce job to YARN from the included samples in the 
share/hadoop/mapreduce directory.  The master JAR file has several sample applications to test 
your YARN installation.  After submitting the job, progress can viewed by updating the 
Resource Manager web page mentioned previously.    

 You can get a full list of examples by entering: 
./hadoop jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.0.4-alpha.jar 

A list of options for each example can be produced by adding the example name to the above 
command. The following is a list of the included jobs in the examples JAR file. 

▪ aggregatewordcount: An Aggregate based map/reduce program that counts the words in 
the input files. 

▪ aggregatewordhist: An Aggregate based map/reduce program that computes the 
histogram of the words in the input files. 



Chapter 1 YARN Quick Start 10 

▪ bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of 
Pi. 

▪ dbcount: An example job that counts the pageview counts from a database. 

▪ distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of 
Pi. 

▪ grep: A map/reduce program that counts the matches to a regex in the input. 

▪ join: A job that effects a join over sorted, equally partitioned datasets 

▪ multifilewc: A job that counts words from several files. 

▪ pentomino: A map/reduce tile laying program to find solutions to pentomino problems. 

▪ pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method. 

▪ randomtextwriter: A map/reduce program that writes 10GB of random textual data per 
node. 

▪ randomwriter: A map/reduce program that writes 10GB of random data per node. 

▪ secondarysort: An example defining a secondary sort to the reduce. 

▪ sort: A map/reduce program that sorts the data written by the random writer. 

▪ sudoku: A sudoku solver. 

▪ teragen: Generate data for the terasort 

▪ terasort: Run the terasort 

▪ teravalidate: Checking results of terasort 

▪ wordcount: A map/reduce program that counts the words in the input files. 

Some of the examples require files to be copied to/from HDFS. For those unfamiliar with basic 
HDFS operation, an HDFS quick start is provided in Appendix B, “HDFS Quick Start.” 

Wrap Up 
With a working installation of YARN, the concepts, examples, and applications found in this 
book can be explored further without the need for a large production cluster.  Keep in mind that 
there are many configuration aspects that were simplified for this single machine installation.  
In particular, a single workstation/server install does not have a true parallel HDFS or parallel 
MapReduce component.  Additional production installation scenarios will be provided in 
Chapter 4, “Installing YARN.” 



 11 

2 
YARN and the Hadoop 

Ecosystem 

The new Apache Hadoop YARN resource manager is introduced in this chapter. In addition to 
enabling non-MapReduce tasks to work within a Hadoop installation, YARN provides several 
other advantages over the previous version of Hadoop including better scalability, cluster 
utilization, and user agility. 

YARN also brings with it several new services that separate it from the standard Hadoop 
MapReduce model. A new ResourceManger acting as a pure resource scheduler is the sole 
arbitrator of cluster resources. User applications, including MapReduce jobs, ask for specific 
resource requests via the new ApplicationMaster component, which in in-turn negotiates with 
the ResourceManager to create an application container within the cluster. 

By incorporating MapReduce as a YARN framework, YARN also provides full backward 
compatibility with existing MapReduce tasks and applications. 

Beyond MapReduce 
The Apache Hadoop ecosystem continues to grow beyond the simple MapReduce job. 
Although MapReduce is still at the core of many Hadoop 1.0 tasks, the introduction of YARN 
has expanded the capability of a Hadoop environment to move beyond the basic MapReduce 
process.  

The basic structure of Hadoop with Apache Hadoop MapReduce v1 (MRv1) can be seen in 
Figure 2.1. The two core services, HDFS and MapReduce, form the basis for almost all Hadoop 
functionality. All other components are built around these services and must use MapReduce to 
run Hadoop jobs.  

Apache Hadoop provides a basis for large scale MapReduce processing and has spawned a big 
data ecosystem of tools, applications, and vendors. While MapReduce methods enable the users 
to focus on the problem at hand rather than the underlying processing mechanism, they do limit 
some of the problem domains that can run in the Hadoop framework.  
 



Chapter 2 YARN and the Hadoop Ecosystem 12 

 

Figure 2.1  The Hadoop 1.0 ecosystem, MapReduce and HDFS are the core components, 
while other are built around the core. 

To address these needs, the YARN (Yet Another Resource Negotiator) project was started by 
the core development team to give Hadoop the ability to run non-MapReduce jobs within the 
Hadoop framework. YARN provides a generic resource management framework for 
implementing distributed applications. Starting with Apache Hadoop version 2.0, MapReduce 
has undergone a complete overhaul and is now re-architected as an application on YARN to be 
called MapReduce version 2 (MRv2). YARN provides both full compatibility with existing 
MapReduce applications and new support for virtually any distributed application. Figure 2.2 
illustrates how YARN fits into the new Hadoop ecosystem. 

The introduction of YARN does not change the capability of Hadoop to run MapReduce jobs. 
It does, however, position MapReduce as merely one of the application frameworks within 
Hadoop, which works the same as it did in MRv1. The new capability offered by YARN is the 
use of new non-MapReduce frameworks that add many new capabilities to the Hadoop 
ecosystem. 

The MapReduce Paradigm 
The MapReduce processing model consists of two separate steps. The first step is an 
embarrassingly parallel map phase where input data is split into discreet chunks that can be 
processed independently. The second and final step is a reduce phase where the output of the 
map phase is aggregated to produce the desired result. The simple, and fairly restricted, nature 
of the programming model lends itself to very efficient and extremely large-scale 
implementations across thousands of low cost commodity servers (or nodes).
 



Apache Hadoop MapReduce    
 

13 

 

Figure 2.2  YARN adds a more general interface to run non-MapReduce jobs within the 
Hadoop framework  

When MapReduce is paired with a distributed file-system such as Apache Hadoop HDFS 
(Hadoop File System), which can provide very high aggregate I/O bandwidth across a large 
cluster of commodity servers, the economics of the system are extremely compelling—a key 
factor in the popularity of Hadoop.  

One of the keys to Hadoop performance is the lack of data motion where compute tasks are 
moved to the servers on which the data reside and not the other way around (i.e., large data 
movement to compute servers is minimized or eliminated).  Specifically, the MapReduce tasks 
can be scheduled on the same physical nodes on which data are resident in HDFS, which 
exposes the underlying storage layout across the cluster. This design significantly reduces the 
network I/O patterns and keeps most of the I/O on the local disk or on a neighboring server 
within the same server rack. 

Apache Hadoop MapReduce 
To understand the new YARN process flow, it will be helpful to review the original Apache 
Hadoop MapReduce design. As part of the Apache Software Foundation, Apache Hadoop 
MapReduce has evolved and improved as an open-source project. The project is an 
implementation of the MapReduce programming paradigm described above. The Apache 
Hadoop MapReduce project itself can be broken down into the following major facets: 

▪ The end-user MapReduce API for programming the desired MapReduce application.  

▪ The MapReduce framework, the run-time implementation of various phases such as the 
map phase, the sort/shuffle/merge aggregation and the reduce phase.  



Chapter 2 YARN and the Hadoop Ecosystem 14 

▪ The MapReduce system, the back-end infrastructure required to run MapReduce 
applications, manage cluster resources, schedule thousands of concurrent jobs, etc.  

This separation of concerns has significant benefits, particularly for end-users where they can 
completely focus on their application via the API and let the combination of the MapReduce 
Framework and the MapReduce System deal with the complex details such as resource 
management, fault-tolerance, and scheduling. 

The current Apache Hadoop MapReduce system is composed of the several high level elements 
as shown in Figure 2.3.  The master process is the JobTracker, which is the clearing house for 
all MapReduce jobs on in the cluster. Each Node has a TaskTracker process that manages tasks 
on the individual node. The TaskTrakers communicate with and are controlled by the 
JobTracker. 

The JobTracker is responsible for resource management (managing the worker server nodes i.e. 
TaskTrackers), tracking resource consumption/availability and also job life-cycle management 
(scheduling individual tasks of the job, tracking progress, providing fault-tolerance for tasks. 
etc). 

The TaskTracker has simple responsibilities—launch/teardown tasks on orders from the 
JobTracker and provide task-status information to the JobTracker periodically. 

The Apache Hadoop MapReduce framework has exhibited some growing pains. In particular, 
with regards to the JobTracker, several aspects including scalability, cluster utilization, 
capability for users to control upgrades to the stack, i.e., user agility and, support for workloads 
other than MapReduce itself have been identified as desirable features. 

The Need for Non-MapReduce Workloads 
MapReduce is great for many applications, but not everything; other programming models 
better serve requirements such as graph processing (e.g., Google Pregel/Apache Giraph) and 
iterative modeling using Message Passing Interface  (MPI). As is often the case, much of the 
enterprise data is already available in Hadoop HDFS and having multiple paths for processing 
is critical and a clear necessity. Furthermore, since MapReduce is essentially batch-oriented, 
support for real-time and near real-time processing has become an important issue for the user 
base. A more robust computing environment within Hadoop enables organizations to see an 
increased return on the Hadoop investments by lowering operational costs for administrators, 
reducing the need to move data between Hadoop HDFS and other storage systems, providing 
other such efficiencies. 

Addressing Scalability 
The processing power available in data-centers continues to increase rapidly. As an example, 
consider the additional hardware capability offered by a commodity server over a three-year 
period: 

▪ 2009 – 8 cores, 16GB of RAM, 4x1TB disk  

▪ 2012 – 16+ cores, 72GB of RAM, 12x3TB of disk.  



Apache Hadoop MapReduce    
 

15 

 

Figure 2.3  Current Hadoop MapReduce Control Elements 

These new servers are often available at the same price-point as those of previous generations. 
In general, servers are twice as capable today as they were 2-3 years ago—on every single 
dimension. Apache Hadoop MapReduce is known to scale to production deployments of 
approximately 5000 server nodes of 2009 vintage. Thus, for the same price the number of CPU 
cores, amount of RAM, and local storage available to the user will put continued pressure on 
the scalability of new Apache Hadoop installations. 

Improved Utilization 
In the current system, the JobTracker views the cluster as composed of nodes (managed by 
individual TaskTrackers) with distinct map slots and reduce slots, which are not fungible.  
Utilization issues occur because maps slots might be ‘full’ while reduce slots are empty (and 
vice-versa). Improving this situation is necessary to ensure the entire system could be used to 
its maximum capacity for high utilization and applying resources when needed. 
 



Chapter 2 YARN and the Hadoop Ecosystem 16 

User Agility 
In real-world deployments, Hadoop is very commonly offered as a shared, multi-tenant system. 
As a result, changes to the Hadoop software stack affect a large cross-section of, if not the 
entire, enterprise. Against that backdrop, users are very keen on controlling upgrades to the 
software stack as it has a direct impact on their applications. Thus, allowing multiple, if limited, 
number of versions of the MapReduce framework is critical for Hadoop. 

Apache Hadoop YARN 
The fundamental idea of YARN is to split up the two major responsibilities of the JobTracker, 
in other words resource management and job scheduling/monitoring, into separate daemons: a 
global ResourceManager and per-application ApplicationMaster (AM). The ResourceManager 
and per-node slave, the NodeManager (NM), form the new, and generic, operating system for 
managing applications in a distributed manner. 

The ResourceManager is the ultimate authority that arbitrates resources among all the 
applications in the system. The per-application ApplicationMaster is, in effect, a framework 
specific entity and is tasked with negotiating resources from the ResourceManager and working 
with the NodeManager(s) to execute and monitor the component tasks. 

The ResourceManager has a pluggable scheduler component, which is responsible for 
allocating resources to the various running applications subject to familiar constraints of 
capacities, queues etc. The Scheduler is a pure scheduler in the sense that it performs no 
monitoring or tracking of status for the application, offering no guarantees on restarting failed 
tasks either due to application failure or hardware failures. The scheduler performs its 
scheduling function based on the resource requirements of an application by using the abstract 
notion of a resource container, which incorporates resource dimensions such as memory, CPU, 
disk, network etc. 

The NodeManager is the per-machine slave, which is responsible for launching the 
applications’ containers, monitoring their resource usage (CPU, memory, disk, network), and 
reporting the same to the ResourceManager. 

The per-application ApplicationMaster has the responsibility of negotiating appropriate 
resource containers from the Scheduler, tracking their status and monitoring for progress. From 
the system perspective, the ApplicationMaster itself runs as a normal container. An 
architectural view of YARN is provided in Figure 2.4. 

One of the crucial implementation details for MapReduce within the new YARN system is the 
reuse of the existing MapReduce framework without any major surgery. This step was very 
important to ensure compatibility for existing MapReduce applications and users.  



YARN Components 17 

 

YARN Components 
By adding new functionality, YARN brings in new components into the Apache Hadoop 
workflow. These components provide a finer grain of control for the end user and at the same 
time offer more advanced capabilities to the Hadoop ecosystem.   

Resource Manager 
As mentioned, the YARN ResourceManager is primarily a pure scheduler. It is strictly limited 
to arbitrating available resources in the system among the competing applications. It optimizes 
for cluster utilization (keeps all resources in use all the time) against various constraints such as 
capacity guarantees, fairness, and SLAs. To allow for different policy constraints the 
ResourceManager has a pluggable scheduler that enables different algorithms such as capacity 
and fair scheduling to be used as necessary. 

 

Figure 2.4  New Yarn Control Elements 



Chapter 2 YARN and the Hadoop Ecosystem 18 

ApplicationMaster 
An important new concept in YARN is the ApplicationMaster. The ApplicationMaster is, in 
effect, an instance of a framework-specific library and is responsible for negotiating resources 
from the ResourceManager and working with the NodeManager(s) to execute and monitor the 
containers and their resource consumption. It has the responsibility of negotiating appropriate 
resource containers from the ResourceManager, tracking their status and monitoring progress. 

The ApplicationMaster design enables YARN to offer the following important new features: 

▪ Scale: The Application Master provides much of the functionality of the traditional 
ResourceManager so that the entire system can scale more dramatically. Simulations have 
shown jobs scaling to 10,000 node clusters composed of modern hardware without 
significant issue. As a pure scheduler the ResourceManager does not, for example, have 
to provide fault-tolerance for resources across the cluster. By shifting fault tolerance to 
the ApplicationMaster instance, control becomes local and not global. Furthermore, since 
there is an instance of an ApplicationMaster per application, the ApplicationMaster itself 
isn’t a common bottleneck in the cluster.  

▪ Open: Moving all application framework specific code into the ApplicationMaster 
generalizes the system so that we can now support multiple frameworks such as 
MapReduce, MPI and Graph Processing.  

These features were the result of some key YARN design decisions: 

▪ Move all complexity (to the extent possible) to the ApplicationMaster while providing 
sufficient functionality to allow application-framework authors sufficient flexibility and 
power.  

▪ Since it is essentially user-code, do not trust the ApplicationMaster(s). In other words. no 
ApplicationMaster is a privileged service.  

▪ The YARN system (ResourceManager and NodeManager) has to protect itself from 
faulty or malicious ApplicationMaster(s) and resources granted to them at all costs.  

It’s useful to remember that, in reality, every application has its own instance of an 
ApplicationMaster. However, it’s completely feasible to implement an ApplicationMaster to 
manage a set of applications (e.g., ApplicationMaster for Pig or Hive to manage a set of 
MapReduce jobs). Furthermore, this concept has been stretched to manage long-running 
services, which manage their own applications (e.g., launch HBase in YARN via a hypothetical 
HBaseAppMaster). 

Resource Model 
YARN supports a very general resource model for applications. An application (via the 
ApplicationMaster) can request resources with highly specific requirements such as: 

▪ Resource-name (including hostname, rackname and possibly complex network 
topologies)  



YARN Components    
 

19 

▪ Amount of Memory 

▪ CPUs (number/type of cores)  

▪ Eventually resources like disk/network I/O, GPUs, etc.  

ResourceRequest and Containers 
YARN is designed to allow individual applications (via the ApplicationMaster) to utilize 
cluster resources in a shared, secure and multi-tenant manner. It also remains aware of cluster 
topology in order to efficiently schedule and optimize data access (i.e., reduce data motion for 
applications to the extent possible). 

In order to meet those goals, the central Scheduler (in the ResourceManager) has extensive 
information about an application’s resource needs, which allows it to make better scheduling 
decisions across all applications in the cluster. This leads us to the ResourceRequest and the 
resulting Container. 

Essentially an application can ask for specific resource requests via the ApplicationMaster to 
satisfy its resource needs. The Scheduler responds to a resource request by granting a container, 
which satisfies the requirements laid out by the ApplicationMaster in the initial 
ResourceRequest. 

A  ResourceRequest has the following form: 
<resource-name, priority, resource-requirement, number-of-containers> 

These components are described as follows: 

▪ Resource-name is either hostname, rackname or * to indicate no preference. Future plans 
may support even more complex topologies for virtual machines on a host, more complex 
networks, etc.  

▪ Priority is intra-application priority for this request (not across multiple applications).  

▪ Resource-requirement is required capabilities such as memory, CPU, etc. (currently 
YARN only supports memory and CPU).  

▪ Number-of-containers is just a multiple of such containers.  

Essentially, the Container is the resource allocation, which is the successful result of the 
ResourceManager granting a specific ResourceRequest. A Container grants rights to an 
application to use a specific amount of resources (memory, CPU etc.) on a specific host. 

The ApplicationMaster has to take the Container and present it to the NodeManager managing 
the host, on which the container was allocated, to use the resources for launching its tasks. For 
security reasons, the Container allocation is verified, in the secure mode, to ensure that 
ApplicationMaster(s) cannot fake allocations in the cluster. 



Chapter 2 YARN and the Hadoop Ecosystem 20 

Container Specification 
While a Container, as described above, is merely a right to use a specified amount of resources 
on a specific machine (NodeManager) in the cluster, the ApplicationMaster has to provide 
considerably more information to the NodeManager to actually launch the container. YARN 
allows applications to launch any process and, unlike existing Hadoop MapReduce, it isn’t 
limited to Java applications. 

The YARN Container launch specification API is platform agnostic and contains: 

▪ Command line to launch the process within the container.  

▪ Environment variables.  

▪ Local resources necessary on the machine prior to launch, such as jars, shared-objects, 
auxiliary data files etc.  

▪ Security-related tokens.  

This design allows the ApplicationMaster to work with the NodeManager to launch containers 
ranging from simple shell scripts to C/Java/Python processes on Unix/Windows to full-fledged 
virtual machines. 

Wrap Up 
The release of Apache Hadoop YARN provides many new capabilities to the existing Hadoop 
big data ecosystem. While the scalable MapReduce paradigm has enabled previously 
intractable problems to be efficiently managed on large clustered systems, YARN provides a 
framework for managing both MapReduce and non-MapReduce tasks of greater size and 
complexity. YARN provides the framework to apply low cost commodity hardware to virtually 
any big data problem. 




